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A challenge : the spiralWith constraintsClustering non supervised



• Non-supervised learning

• Goal : to organise objects in groups (= clusters)

• We need a similarity measure

Objectives

Clustering (categorisation) Classification
• Non supervised

• The algorithm needs only a 

similarity measure

• Supervised

• It needs already classified

examples

...

A A B C ?



Example

Based on the distance



Example

Based on the concept
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Goal of the categorisation

• Group the data into a homogeneity criterion

• Criterion complex to define, can depend on :

• the data

• the target application

• the subjectivity of the user



A good clustering ?

• Produce categories with a high quality

– The intra-cluster similarity should be large

– The inter-cluster similarity should be low

• The quality of the results depends on

– The similarity measure and its implementation

– The definition and the representation of a cluster

• The method could be evaluated using its ability to discover 

hidden patterns



• Exclusive clustering, hard clustering

• Soft, fuzzy clustering

• Hierarchical clustering

• Probabilistic clustering

Several kinds
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Measures

Notation

• { o0, ..., oN } : N data samples

• K : number of the clusters

• gk : gravity center of the cluster Ck

• k : variance of the cluster Ck

•  : variance of the full dataset



Minkowski measure
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p=1 Manhattan distance

p=2 Euclidian distance

Used for : data with a large number of attributes (d >> 3)



Distance measure
Criterion Formula Summary

Intra-cluster inertia

Variance between the 

samples and the gravity 

center of their clusters

Compacity Grouping degree

Xie-Beni criterion 

(1991)

Measure of the separation 

of the clusters, scale 

independent

Wemmert-

Gançarski criterion 

(1999)

Separation and compacity 

of the clusters, scale 

independent



Hard-Clustering : K-Means
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J is the distance between the n data points from the centers of their respective clusters

K-Means (MacQueen, 1967)

Goal : minimize J



K-Means

The algorithm :

K-MEANS ( K )

1. Place randomly K centers (centroids) in the space of the objects we have to 

categorize. Each cluster is represented by its corresponding centroid.

DO

2a. Assign to each object the cluster for which its centroid is the closest one

2b. When all the objects have be assigned, recompute all the K locations of 

the centroids, using the barycenter

UNTIL the locations converge



K-Means

Justification :

• N data sample : [X1, ..., Xn]

• K clusters, with k<n

• mi is the barycenter of the examples of the cluster i

Xi is in Ci if ||xi-mi|| is minimal.

Starting point for m2

Starting point for m1

Final cut

cours1/tutorial_html/AppletKM.html
cours1/tutorial_html/AppletKM.html


Soft-Clustering : Fuzzy C-Means

Fuzzy C-Means (FCM)   [Dunn, 1973 ; Bezdek, 1981]

• Now, a data can belong to two clusters or more

• Used very frequently for pattern recognition (ex: OCR)

• Goal : minimize this objective function Jm
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Soft-Clustering : Fuzzy C-Means

FUZZY-C-MEANS ( K, m )

- Initialize randomly a matrix U=[uij]      U
(0) = U      (membership matrix)

- At the step k, do

- Compute the centroids C(k) = [cj] using U(k)

- Update U(k) , which becomes U(k+1)

While || U(k+1) - U(k) || > 
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Soft-Clustering : Fuzzy C-Means
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The membership matrix U = [uij]

The K clusters

The N data points

The data ‘4’ belongs at 

50% to the cluster C=4



Comparison with K-Means

Example :

All the data

K = 2

m  (membership function) m  (membership function)

cours1/tutorial_html/AppletFCM.html
cours1/tutorial_html/AppletFCM.html


Hierarchical Categorization

Given :

• N examples,

• A similarity matrix between all the examples N*N

Algorithm :

1. Start to assign each data into its own cluster. We define the distance between the clusters 

as the distance between the data they represent

DO

2a. Find the closest pair of clusters, and join them into the same cluster

2b. Compute the distance d between the remaining clusters (the new one, and all the 

remainings)

WHILE all the examples are not in the same cluster R (root), having the size N

Basic concepts from (S.C. Johnson,1967)

Sortie :

Etape 1 : 6 clusters

Etape 2 : 5 clusters

Etape 3 : 4 clusters

Etape 4 : 3 clusters

Etape 5 : 2 clusters

Etape 6 : 1 clusters



How to compute the distance d(i,j) ?

single-linkage (ou minimum) :

d is the shortest distance between any element in the cluster i and any 

element in the cluster j.

complete-linkage (ou diameter) :

d is the biggest distance between any element in the cluster i and any element 

in the cluster j.

average-linkage :

d is the average distance between the elements of the two clusters.

UCLUS Method [D'Andrade 1978] :

Use of the median, and not the mean.

[0.0  0.1  0.1  0.1 0.3  0.4  2.5]

Advantage : more robust for datasets having a lot of outliers.

mean = 0.5median

Hierarchical Categorization



Grouping categorization (ex: Johnson, 1967) :

join iteratively the clusters

Spliting categorization (really rare) :

start from one big cluster, and split it



Hierarchical Categorization



• Proximity matrix D = [d(i,j)] for two objects i and j.

• d(i,i) = 0

• d(i,j) = d(j,i)

• D : square matrix (NxN)

• Sequence of n clusters : (0), (1), ..., (n-1)

i, index of the cluster

(i), the content of the cluster I

• L(k) : k-th level of the categorization

(the distance intra-cluster are represented with a horizontal edge in the 

tree)

• Proximity between (a) and (b) : d[(a),(b)]

Algorithm of (Johnson, 1967)

Hierarchical Categorization

cours1/tutorial_html/AppletKM.html
cours1/tutorial_html/AppletKM.html


HIERARCHICAL-CLUSTERING ( D )

Put all the objects into a cluster. L(c) = 0 for any cluster c. m = 0

DO

- Find the pair of clusters (a) and (b) the most similar. d[(a),(b)] = min d[(i)(j)] for any cluster i, j. 

- Increment the counter m = m+1. Join (a) et (b) and call it (m). Assign the level L(m) = d[(a),(b)].

- Update the proximity matrix D. Remove the lines/rows corresponding to (a) et (b) and create a 

line/row for (m). Compute the new values of D :

d[(k), (m)] = min { d[(k),(a)], d[(k),(b)] }  for any cluster (k) != (a) or (b)

WHILE L(m) < K

Hierarchical Categorization

Algorithm of (Johnson, 1967)

cours1/tutorial_html/AppletKM.html
cours1/tutorial_html/AppletKM.html


Problems with the grouping categorization :

• Not efficient with a lot of data.

• Time complexity: O(n²)

• Cannot reset the previous grouping

Hierarchical Categorization



Applications

• Marketing : find similar consumers (same products bought, same 

behavior) in a supermarket database

• Biology : classification of animals, plants, …

• Library : find groups of books, reviews, CD/DVD, …

• Insurance, banking : find stocks with the same trends, identify similar 

appartments, markets, … Identify strange behavior (cheaters)

• Urban plannification : identify parcels given their values, their types, their 

geographical location

• Terrestrial studies : groups and identify dangerous areas (tidal wave, 

tsunami, earthquake, ...)

• Web : automatic classification of a document base, using keywords (texts, 

images, musics, videos, ...)



• Thesis of Jean-Pierre Novak (2000)
(hyper-rectangular neural nets)

Examples



• Weka (free software for classification in Java)

Examples



• K-Means on real pictures

Examples

The Orangerie garden (Strasbourg, FR)

The saltmarshes of San Felice (Venice, IT)


