Knowledge Extraction

based on

Evolutionary Learning

Reference manual

Version: 1.0.
Date: 20-5-2009.

CONTENTS CONTENTS

Contents
1 Basic KEEL developement guidelines 3
1.1 Introduction 3
12 Developinganewmethod 3
1.2.1 Reading of the configuration file 4
1.2.2 Developement of the method 5
1.2.3 Writing the outputfiles 5
124 Registering the method in KEEL 5
12,5 Makingtheusecasefiles. 8
1.2.6 Building theexecutables 9
2 Method Description files 10
21 Header 10
22 Parameters e 11
23 Exampleofuse 12
3 Method Configuration files 13
31 Inputfiles 13
32 Outputfiles 14
3.3 Parameters 14
34 Exampleofuse 14
4 Data files 15
41 Header e 15
42 Data. e 16
43 Exampleofuse 17
5 Output files 18
51 Exampleofuse 18
6 Use Case files 20
6.1 Name 20

KEEL - Reference Manual Page 1 of 31

CONTENTS CONTENTS

6.2 Reference e 21
6.3 General description 0 L 21
64 Example 22
6.5 Exampleofuse 22
7 API Dataset 24
71 Datafilesgrammar 24
7.2 Semantic restrictions of the datafiles 26
721 Attributes 26

7.2.2 Inputs and outputs definition 26

723 Missingvalues 27

724 Trainandtestfiles 27

7.3 Descriptionof theclasses. 28
73.1 InstanceSet 28

732 Instance 28

733 Attributes 30

734 Attribute 30

KEEL - Reference Manual Page 2 of 31

Basic KEEL developement guidelines

1 Basic KEEL developement guidelines

1.1 Introduction

The purpose of this document is to describe some basic concepts about the
structure of KEEL (Knowledge Extraction based on Evolutionary Learning)
and the format of its internal files.

The aim of this section is to present the KEEL framework, describing
some guidelines to help a potential developer to build new methods inside
the KEEL environment. The next sections will deal with the formats of the
configuration files of KEEL (including data sets files, method descriptions
and so on). Finally, the last section describes the API dataset of KEEL, which
is used to handle and check the data sets files.

1.2 Developing a new method

Before to start the task of developing a new method inside of KEEL envi-
ronment, some operations have to be performed in order to fully integrate
it. By following this guidelines, a developer can left all the input/output
operations to be accomplished by KEEL environment, focusing its efforts in
the construction of the method itself.

The steps needed to complete the integration of a new method in KEEL
are:

Reading of the configuration file.

Development of the method.

Writing the output files.

Registering the method in KEEL.

Making the use case files.

Building the executables of the method.

KEEL - Reference Manual Page 3 of 31

Basic KEEL developement guidelines Developing a new method

1.2.1 Reading of the configuration file

The KEEL methods only accept one parameter: The name and path of a
configuration file. A typical main class of a method can be the following;:

public class Main {
private static Clas classifier;
public static void main (String args[]) {

if (args.length != 1){
System.err.println ("Error.”);
} else {
classifier = new Clas(args[0]);
classifier.execute ();

}

} //end—method
}//end—class

The configuration file contains information about the input and output
files of the method. In addition, it contains the values for all the parameters
defined. A full description of the configuration files can be found in section
3.

By interpreting this file, the method should be able to acquire the correct
values of its parameters, including the seed to initialize the random number
generator if the method needs it.

Also, the names and paths of the input and output files are specified inside.
Usually, a KEEL method employs two input data files: The training file,
containing the data set which should be employed in the train phase of the
method, and the test file, containing the data set which should be employed
in the test phase. In addition, any method excepting the preprocessing
methods and the test methods specify a third file, the validation file. This
file contains a copy of the original dataset of the experiment, which can be
used in comparisons with the train data.

The format of the data files is explained in section 4. These files must be
handled with care, because they will be employed not only by the method,

KEEL - Reference Manual Page 4 of 31

Basic KEEL developement guidelines Developing a new method

but also by the KEEL API dataset (see section 7) in order to load and check
the data in an efficient way.

Any KEEL method must define at least two output files: A train output
file and a test output file. In addition, it is possible to define additional
output files in the configuration file. They will be explained in the next
subsections of this guide.

1.2.2 Developement of the method

The development of the method can be done in any programming environ-
ment. The only requirements are: The method must be developed with the
Java programming language, and it must employ a package structure whose
root will be the keel/src directory, where the sources of any KEEL method
are located.

1.2.3 Writing the output files

As is explained before, at least two output files must be produced by the
method (the train output file, and the test output file). Its format is described
in section 5.

If it is desired to employ additional output files, they also can be created
at the end of the execution on the method. These additional files will get
its name from the configuration file. Also, it is important to note that, in
order to let the KEEL GUI automatically generate the names of these files,
the number of additional outputs of the methods must be placed in the
corresponding method description file.

1.2.4 Registering the method in KEEL

When the method have been fully coded, it must be registered in the KEEL
configuration files, to allow the KEEL GUI to employ the new method.

The first step is to create a method description file. The format of these
files is fully described in section 2.

The second step involves modifying the master description file of each
category method. Currently, 11 categories are defined:

e Discretization

KEEL - Reference Manual Page 5 of 31

Basic KEEL developement guidelines Developing a new method

e Educational Methods
e Educational Preprocess
e Feature Selection

e Instance Selection

e Method

e Postprocess

e Preprocess

o Tests

e TransOthers

e Visualize

When the correct master description file have been found (please, ask to a
KEEL project manager if it is not clear what file have to be modified), a new
registry containing the definition of the method must be created. The KEEL
master description file registers have the following structure:

<method>
Header

Input
Output
</method>

The header is composed by four nodes:

<name>Disc—UniformWidth</name>
<family>Discretizers</family>

<jar_file>Disc—UniformWidth.jar</jar_file>
<problem_type>unspecified</problem_type>

Name: The name of the method.
Family: The category of the method.

Jar File: The name of the Jar file which contains the method.

KEEL - Reference Manual Page 6 of 31

Basic KEEL developement guidelines Developing a new method

Problem Type: The class of problems which can manage the method. There
are defined 4 classes:

o Classification, for supervised classification problems.

e Regression, for regression problems.

e Unsupervised, for unsupervised classification problems (e.g. clus-
tering).

e Unspecified, for any problem (supervised classification, unsu-
pervised classification or regression).

The input and output parts defines the types of data which the method
is able to manage, both in input data and output data. Their fields must
specify which types are allowed, by employing “yes” and “no” keywords.
A description of the fields is shown as follows:

<continuous>Yes</continuous>
<integer>Yes</integer>
<nominal>Yes</nominal>
<missing>Yes</missing>
<imprecise>No</imprecise>
<multiclass>Yes</multiclass>
<multioutput>No</multioutput>

Continuous: The method is able to work with continuous values.
Integer: The method is able to work with integer values.

Nominal: The method is able to work with nominal values.
Missing: The method is able to handle missing values.

Imprecise Value: The method is able to work with imprecise values.

Multiclass: The method is able to work with problem which defines more
than 2 classes.

Multioutput: The method is able to work with data which defines more
than 1 output for each instance.

KEEL - Reference Manual Page 7 of 31

Basic KEEL developement guidelines Developing a new method

When the header, input and output sections were completely defined, then
the new registry can be place inside the corresponding master description
file. Below is shown a valid example of registry:

<method>
<name>Disc—UniformWidth</name>
<family>Discretizers</family>
<jar_file>Disc—UniformWidth.jar</jar_file>
<problem_type>unspecified</problem_type>
<input>
<continuous>Yes</continuous>
<integer>Yes</integer>
<nominal>Yes</nominal>
<missing>Yes</missing>
<imprecise>No</imprecise>
<multiclass>Yes</multiclass>
<multioutput>No</ multioutput>
</input>
<output>
<continuous>No</continuous>
<integer>No</integer>
<nominal>Yes</nominal>
<missing>Yes</missing>
<imprecise>No</imprecise>
<multiclass>Yes</multiclass>
<multioutput>No</multioutput>
</output>
</method>

1.2.5 Making the use case files

When developing a new method, it is important to document properly its
functions and objectives. Also, the users should be able to look up relevant
information about the method (a brief description, some references, the
description of its parameters, etc.) when they select the method in KEEL.

To manage this information, the KEEL GUI defines the use case files,
which are XML files containing all the relevant information needed to em-
ploy any KEEL method. A full description of the use case files can be found
in section 6.

KEEL - Reference Manual Page 8 of 31

Basic KEEL developement guidelines Developing a new method

1.2.6 Building the executables

When the method was fully developed, and its relevant configuration files
have been created, the last step is to add it to the build.xml file (a ANT script
file), so the new versions of KEEL could be able to build it inside the KEEL
environment. The build.xml is a critical file, so it is not recommended to
modify it without authorization of a KEEL project manager.

The build.xml changes dynamically with any new version of KEEL, thus
its is not possible to fully describe its structure here. However, it is possible
to describe which part of the file must be changed to allow the inclusion of
new methods.

Firstly, the jar target must be found. It should have the following struc-
ture:

14

<target name="jar” depends="compile”
description="Build jars”>

The jar target is composite by a great number of tasks, every one dealing
with the construction of a jar file for each method. Inside this target, the
construction of the new jar file must be described as another task. Here is a
valid example:

<jar
jarfile="${distMet }/KNN. jar” manifest=
"${src }/keel/Algorithms/Lazy_Learning/KNN/Manifest”>
<fileset dir="${bin}” includes=
“keel/Algorithms/Lazy_Learning /KNN/xx/x.class”/>
<fileset dir="${bin}”

includes="keel/Algorithms/Preprocess/Basic/+x/x.class
org/core/xx/*.class
keel/Dataset/*x/x.class
keel/Algorithms/Lazy_Learning/x.class”/>

<ljar>

The task must define the locations of the new jar file and their corre-
sponding manifest file. Also, must include the files from the classes which
compose the method. Also, the files from the imported classes are required
to fully describing the task.

KEEL - Reference Manual Page 9 of 31

Method Description files

2 Method Description files

Every method in KEEL (e.g., a preprocess method, a test ...) has assigned a
XML file which describes its main characteristics. This file will be employed
by the KEEL GUI to allow the user to select the values of the parameters of
any execution of the method.

The KEEL Method Description files are located under the ../dist/algorithm
directory, inside of the folder where its associated .JAR file is generated
(e.g., ./dist/algorithm/methods). Each Method Description file is an XML
composed by a unique root node, <algorithm_specification> . This node
is divided into two parts:

<algorithm_specification>
Header

Parameters
</algorithm_specification>

Header : Basic information about the method.

Parameters : A list of parameters of the method.

2.1 Header

The header is composed by four nodes:

<name>K Nearest Neighbors Classifier</name>
<nParameters>2</nParameters>

<seed>0</seed>

<nOutput>1</nOutput>

<Name> : The name of the method.

<nParameters> : The number of parameters of the methods (must be
0 or highger). Seed values employed to initialize random number
generators are not counted here.

<Seed> : Defines if the method will need a seed to initialize a random
number generator. Valid values are 1, if a seed is needed, or 0, if not.

KEEL - Reference Manual Page 10 of 31

Method Description files Parameters

<nOutput> : The number of additional output files which will be gener-
ated by the method.

2.2 Parameters

The parameters of the method are listed consecutively. A <parameter>
node is employed to describe each one. Each <parameter> is composed by
the following nodes:

<parameter>
<name>K Value</name>
<type>integer</type>
<domain>
<lowerB>1</lowerB>
<upperB>100</upperB>
</ domain>
<default>1</default>
</parameter>

<Name> : The name of the parameter.

<Type> : Type of parameter. KEEL defines four valid types:

integer : An integer value. Can be positive, 0, or negative.

real : A real value. The dot “.” is employed as decimal separator.
text : A string of text.

list : A predefined list of text options

When employing text parameters, no checking operations are done
by the KEEL GUL Thus, the use of list parameters is recommended
when a fixed number of text options are defined, so the method does
not have to check the parameters by itself.

<Domain> : The domain of the parameter. For list parameters is manda-
tory. For text parameters cannot be defined. For integer and real
parameters is optional (if it is not defined, the KEEL GUI will not
check its value).

<lowerB> : The lower value of the parameter (valid only in integer
and real parameters).

KEEL - Reference Manual Page 11 of 31

Method Description files Example of use

<upperB> : The highest value of the parameter (valid only in integer
and real parameters).

<item> : A text value for the parameter (it can be employed only in
list parameters).

<Default> : Default value of the parameter.

2.3 Example of use

This is a valid example of a Method Description file:

<algorithm_specification>
<name>K Nearest Neighbors Classifier</name>
<nParameters>2</nParameters>
<seed>0</seed>
<nOutput>1</nOutput>
<parameter>
<name>K Value</name>
<type>integer</type>
<domain>
<lowerB>1</lowerB>
<upperB>100</upperB>
</domain>
<default>1</default>
</parameter>
<parameter>
<name>Distance Function</name>
<type>list</type>
<domain>
<item>Manhattan</item>
<item>Euclidean</item>
</domain>
<default>Euclidean</default>
</parameter>
</algorithm_specification>

KEEL - Reference Manual Page 12 of 31

Method Configuration files

3 Method Configuration files

In KEEL, every method uses a configuration file to extract the values of
the parameters which will be employed during its execution. Although
it is generated automatically by the KEEL GUI (by using the information
contained in the corresponding method description file, and the values of
the parameters specified by the user), it is important to fully describe its
structure because any KEEL method must be able to completely read it, in
order to get the values of its parameters specified in each execution.

Each configuration file has the following structure:

algorithm : Name of the method.
inputData : A list with the input data files of the method.
outputData : A list with the output data files of the method.

parameters : A list of parameters of the method, containing the name of
each parameter and its value (one line is employed to each one).

3.1 Inputfiles

The files in the inputData list must be separated by one space, being each
one surrounded by quotation marks (). If a validation file is employed by
the method, the files will appear in the following order:

input data= <training file> <validation file> <test file>
If not, the order employed will be:
input data= <training file> <test file>

The validation file is a copy of the original train data employed at the start
of the experiment. It is often employed for comparison tasks between the
initial data and training data when it has been preprocessed.

KEEL - Reference Manual Page 13 of 31

Method Configuration files Output files

3.2 Output files

e A file with the output for training data.
o A file with the output for test data.

e (Optional) Additional output files.

Additional output files can be specified in this list. Although the will
be not managed by other KEEL methods, it is possible to employ them to
extract useful information from the execution of the method (representation
of models extracted, additional outputs, performance measures ...). They
must be marked with the extension .txt.

3.3 Parameters

The rest of the configuration file is used to describe the values of the param-
eters. In each line appears one parameter, followed by a “=" sign and its
assigned value.

If the method needs a seed to initialize a random number generator, it
must be the first parameter described, employing “seed” as name of the
parameter.

3.4 Example of use

This is a valid example of a Method Configuration file (data files lists are
not fully shown):

algorithm = genetic algorithm
inputData = ‘‘./dataset/iris/iris11.dat”’
outputData = “‘./result/ga/iris/resultl.tra’’

seed = 1234578
nGenerations = 500

cross = two_points
crossProbability = 0.6
mutationProbability = 0.2

KEEL - Reference Manual Page 14 of 31

Data files

4 Data files

In KEEL, the data sets are managed by plain ASCII text files, with the .dat
extension. Usually, they are located under the ../dist/data directory, each
one in its own folder (which also should contains the partitions created from
the whole data set). In addition, preprocess methods will also create data
files as its output, which will be placed on the ../datasets directory of its
experiment.

This section describes the format employed to define them (which is
fairly similar to WEKA arff format). Each KEEL data file is composed by 2
sections:

Header : Basic metadata describing the data set.

Data : Content of the dataset.

In both sections it is possible to insert comments, by employing the
“%” character.

4.1 Header

The header is composed by the following metadata:

@relation bupa2
@attribute mcv nominal {a,b,c}

@attribute alkphos integer [23, 138]

@attribute sgpt integer [4, 155]

@attribute sgot integer [5, 82]

@attribute gammagt integer [5, 297]

@attribute drinks real [0.0, 20.0]

@attribute selector {true, false}

@inputs mcv, alkphos, sgpt, sgot, gammagt, drinks
@outputs selector

@relation : The name of the data set.

@attribute : Describes one attribute of the data (a column). It is possible to
define three different types of attributes:

KEEL - Reference Manual Page 15 of 31

Data files Data

integer : @attribute <name> integer [min, max]
real : @attribute <name> real [min, max|

nominal : @attribute <name> { Valuel,value2,...,valueN }

The <name> is the identifier of the attribute. Its maximum length
allowed is 12 characters. The min and max values fon integer and
real attributes, and the list of possible values for nominal attributes,
are optional. If they are missing, the corresponding values will be
extracted from the data by the KEEL data process module.

@inputs : Identifiers of the attributes which must be processed as inputs.

@outputs : Identifiers of the attributes which must be processed as outputs.

The @inputs and @outputs definitions are optional. If they are missing, all
the attributes will be considered as input attributes, except the last, which
will be considered as output attribute.

4.2 Data

The data instances are represented as rows of comma separated values,
where each value corresponds to one attribute, in the order defined by the
header. Missing or null values are defined as <null> or ? .

If the dataset corresponds to a classification problem, the output type
must be nominal:

@attribute selector {true, false}

@outputs selector

@data

a, 92, 45, 27, 31, 0.0, true

a, 64, 59, 32, 23, <null>, false
b, 54, <null>, 16, 54, 0.0, false

KEEL - Reference Manual Page 16 of 31

Data files Example of use

If the dataset corresponds to a regression problem, the output type must
be real:

@attribute selector real [0.0, 20.0]

@outputs selector

@data

a, 92, 45, 27, 31, 0.0, 0.9

a, 64, 59, 32, 23, <null>, 17.5
b, 54, <null>, 16, 54, 0.0, 3.5

4.3 Example of use

This is a valid example of a data file:

@relation bupa2

@attribute mcv nominal {a,b,c}
@attribute alkphos integer [23, 138]
@attribute sgpt integer [4, 155]
@attribute sgot integer [5, 82]
@attribute gammagt integer [5, 297]
@attribute drinks real [0.0, 20.0]
@attribute selector {true, false}
@inputs mcv, alkphos, sgpt, sgot, gammagt, drinks
@outputs selector

@data

a, 92, 45, 27, 31, 0.0, true

64, 59, 32, 23, <null >, false
54, <null>, 16, 54, 0.0, false
78, 34, 24, 36, 0.0, false

55, 13, 17, 17, 0.0, false

62, 20, 17, 9, 0.5, true

67, 21, 11, 11, 0.5, true

54, 22, 20, 7, true

~

~

~

~

~

~

0.5,
60, 25, 19, 5, 0.5, true
52, 13, 24, 15, 0.5, true
62, 17, 17, 15, 0.5, true

~

~

T o o9 N 0T 9 9 0o

~

KEEL - Reference Manual Page 17 of 31

Output files

5 Output files

Every method in KEEL must produce at least two output files: A train results
file (marked with the extension .tra) and a test results file (marked with the
extension .tst). Although the method can employ additional output files to
show more information about the process performed, those additional files
must be handled entirely by the method. Thus, KEEL will only handle the
two standards output files.

Both output files share the same structure: They are composite by the
same header of the data employed as input of the method, and a set of
rows (one for each instance of the data set) describing the expected outputs
and the outputs obtained by the application of the method. Thus, they are
structured as follows:

<Expected;; > ... <Expected;, ><Method;; > ... <Method, >
<Expectedy; > ... <Expected,, ><Method,; > ... <Method,, >

5.1 Example of use
As related before, the structure of the output method is derived from the

input data files employed. For example, if the following file is employed as
input data of a method:

@relation banana

@attribute atl real [—3.09, 2.81]
@attribute at2 real [—2.39, 3.19]
@attribute class {—1.0, 1.0}
@inputs atl, at2

@outputs class

@data

1.14, —-0.114, —-1.0

—1.05, 0.72, —1.0

—0.916, 0.397, 1.0

—1.09, 0.437, 1.0

—0.584, 0.0937, 1.0

1.83, 0.452, —1.0

—1.25, —0.286, 1.0

KEEL - Reference Manual Page 18 of 31

Output files Example of use

A valid output file should be formatted like the following file (note the
single spacing between columns):

@relation banana

@attribute atl real [—3.09, 2.81]
@attribute at2 real [—2.39, 3.19]
@attribute class {—1.0, 1.0}
@inputs atl, at2

@outputs class

@data

—-1.0 —1.0

—1.0 1.0

1.0 —1.0

1.0 1.0

1.0 1.0

—-1.0 —1.0

1.0 1.0

By employing this structure, it is easy to understand how well the task
was performed by the method (in the example shown above, the method
failed to predict the output for the instances 2 and 3, and predicted correctly
the remaining ones).

KEEL - Reference Manual Page 19 of 31

Use Case files

6 Use Case files

The use case files of KEEL provides valuable information to understanding
every of the methods which are available to use. They are XML files, located
in the ../dist/help directory.

Each KEEL use case file is composed by 4 sections:

<method>
Name

Reference

General Description
Example

</method>

Name : The name of the method.
Reference : A list of references associated with the method.
General Description : Generic information about the method.

Example : A example about the use of the method.

6.1 Name

The first part of the use case contains the name of the method, enclosed by
<name> tags:

<name>Name of the method</name> I

KEEL - Reference Manual Page 20 of 31

Use Case files Reference

6.2 Reference

The second part of the use case contains a list of associated references. They
are enclosed each one by <ref> tags.

<reference>
<ref>First reference</ref>

<ref>Second reference</ref>
</reference>

6.3 General description

The general description describes some common features about the method,
as its objective, parameters, type of data which can be handle, etc. It is
composed by the following fields:

Type: General type of method.

Obijetive: Objective of the method.

How work: A brief explanation about how the method works.

Parameter spec: A specification of each parameter of the method. They are
enclosed each one by <param> tags.

Properties: Generic properties of the methods. Each field can contain “yes’
or “no” strings, defining the following capabilities of the method:

Continuous: The method is able to work with continuous values.
Discretized: The method is able to work with discretized values.
Integer: The method is able to work with integer values.
Nominal: The method is able to work with nominal values.
Value Less: The method is able to handle missing values.

Imprecise Value: The method is able to work with imprecise values.

KEEL - Reference Manual Page 21 of 31

Use Case files Example

<generalDescription>
<type>General type of method.</type>
<objective>Objective of the method.</objective>
<howWork>Explanation of how works.</howWork>
<parameterSpec>
<param>Parameter one</param>
<param>Parameter two</param>
</parameterSpec>
<properties>
<continuous>Yes</continuous>
<discretized>Yes</discretized>
<integer>Yes</integer>
<nominal>Yes</nominal>
<valueLess>Yes</valueLess>
<impreciseValue>Yes</impreciseValue>
</properties>
</generalDescription>

6.4 Example

The last part of the use case is employed to show an example of utilization
of the method. It can be employ any number of lines (though, it is not
recommended to place huge examples here).

<example>
A example of utilization of the method.
</example>

6.5 Example of use

A valid example of a use case file is shown in the next page:

KEEL - Reference Manual Page 22 of 31

Use Case files Example of use

<method>

<name>Prototype Nearest Neighbor</name>
<reference>

<ref>Chin—-Liang, Chang. Finding Prototypes for
Nearest Neighbor Classifiers. IEEE Trans.

on Computers, vol. c¢—23, No. 11, 1179-1184.</ref>
</reference>

<generalDescription>
<type>Preprocess Method.</type>
<objective>Reduce the size of the training
set without losing precision or accuracy
in order to a posterior classification</objective>
<howWork>This algorithm merge nearest prototypes
of the set, if classification accuracy of the
original training data set does not decrease and
if they have got the same class.
If not, they are removed from the set.</howWork>
<parameterSpec>
<param>Percentage of prototypes: Real</param>
</parameterSpec>
<properties>
<continuous>Yes</continuous>
<discretized>Yes</discretized>
<integer>Yes</integer>
<nominal>Yes</nominal>
<valueLess>No</valueLess>
<impreciseValue>No</impreciseValue>
</properties>
</generalDescription>
<example>
Problem type: Classification
Method : PGPNN
Dataset: iris
Parameters: default values

We can see output set in Experiment\Results\PGPNN:

</example>
</method>

KEEL - Reference Manual Page 23 of 31

API Dataset

7 API Dataset

One of the main components of KEEL is the API Dataset. It manages the
entire process of acquisition, processing and validation of the data files,
offering the data sets to the developer in a suitable way, freeing him from
the task of acquiring the data needed to perform any experiment.

This section describes three key concepts of the API Dataset:

e Data files grammar. The grammar employed to define the data files.
Any file generated by this grammar will be a valid data file, according
to the rules shown in section 4.

e Semantic restrictions of the data files. Apart from the syntax restric-
tions, some semantic verifications are performed by the API Dataset
over the data files.

e Description of the classes. To close this section, the main public
classes of the API Dataset are described.

7.1 Data files grammar

In this subsection is shown the grammar which describes the format of the
KEEL data files. The final tokens of the grammar are:

e {}. Denotes the void production. It is also known as A or €.

e IDENT. Denotes an identifier (IDENT = (A" -'Z",’a’-'z",’0’-'9")*).
e INTEGER. Is an integer value INTEGER = (0 . 9)™).

e REAL.Is a real value (REAL = (0-9)*[.(0-9)*]).

principal -> Relation
-> Attributes
-> Inputs
-> Outputs
-> Data

Relation -> "Q@relation" IDENT

KEEL - Reference Manual Page 24 of 31

API Dataset

Data files grammar

Attributes ->

"@attribute" IDENT attributeType Attributes

-> {}
attributeType -> "integer" intBoundaries
—-> "real" realBoundaries
-> "{" IDENT idList "}"
intBoundaries -> "[" INTEGER "," INTEGER "]"
-> {}
realBoundaries -> "[" REAL "," REAL "]"
-> {}
idList -> "," IDENT idList
-> {}

Inputs -> "@inputs" IDENT idList

-> {}

Outputs -> "Qoutputs" IDENT idList

-> {}

Data -> Q@data datalList

datalist -> lineData datalist

-> {}

lineData -> IDENT lineDataCont

lineDataCont -> "," IDENT lineDataCont2

lineDataCont2 -> "," IDENT lineDataCont2

->

{}

KEEL - Reference Manual

Page 25 of 31

API Dataset Semantic restrictions of the data files

7.2 Semantic restrictions of the data files
7.2.1 Attributes

An attribute can be defined as integer, real or nominal, as the grammar of
the data files defines. It is optional to define de minimum and maximum
values, or the list of values for any attribute (if they are not defined, they
correct values will be extracted during the processing of the training file).
Anyway, if they are defined for integer or real attributes, the minimum value
defined must be lower than the maximum.

This way, the limits of the values for any attribute will be established
during the processing of the training file. However, it is possible to find
values in the test file which exceed the limits for a concrete attribute (i.e., in
some schemes of cross-validation). Depending of the type of the attribute,
the actions performed by the API dataset are the following;:

o Integer or Real attributes: The new value is changed by its nearest
correct value (i.e, if the value is greater than the maximum, it is re-
placed by the maximum; if it is lower than the minimum, it is replaced
by this one)

e Nominal attributes: The new value is accepted, and the domain of
the attribute is enlarged, adding the new value. In addition, the flag
new ValuelnTest is marked on.

Finally, if one of these cases appears, the API Dataset throws a Test-
DataBoundsExcedeedException to inform about the changes performed. How-
ever, the files will be parsed correctly.

7.2.2 Inputs and outputs definition

The definition of inputs and outputs in the data files is optional. The API
Dataset will automatically extract the missing definitions, following these
rules:

e If no outputs are defined:

- If no input are defined, the last attribute is taken as output. The
remaining ones will be taken as inputs.

KEEL - Reference Manual Page 26 of 31

API Dataset Semantic restrictions of the data files

— If there are some inputs defined, the attributes not marked as
inputs will be taken as outputs.

e If no inputs are defined, the attributes not marked as outputs will be
taken as inputs.

e If inputs and outputs are defined, those attributes who are not cur-
rently defined in one of these categories, are discarded.

Also, it is important to note that the inputs and outputs attributes will be
defined in the same order as they appear in the header of the data file.

7.2.3 Missing values

The API Dataset allows the presence of missing values in the data files,
defined with the <null> or ? tokens. However, only input attributes can
present missing values. If a missing value is detected in an output attribute,
a OutputValueNotKnownException will be cast, aborting the processing of the
data file.

7.2.4 Train and test files

The semantic verifications performed by the API Dataset will vary depend-
ing on the concrete data file processed. Concretely, the actions performed
are:

e The definition of the attributes is taken from the training file.

e During the test file reading, the definitions of the attributes are checked.
If they are not consistent with the ones read from the training file, the
processing of the test file is aborted. Moreover, the inputs and outputs
defined by the test file must be the same which were defined by the
training file. Otherwise, the processing of the test file will be aborted.

KEEL - Reference Manual Page 27 of 31

API Dataset Description of the classes

7.3 Description of the classes

The API Dataset is composed by four main classes:

o InstanceSet: This class contains a complete set of instances defining a
data base.

e Instance: This class represents a single instance.

o Attributes: This static class contains definitions about every attribute
of the data contained in the Instance set.

e Attribute: This class contains relevant information about a single
attribute.

The next subsections will describe their main characteristics.

7.3.1 InstanceSet

This class contains a complete set of instances. Its public methods are:

¢ numlnstances. Returns the number of instances of the Instance Set.
e getInstance. Returns a concrete instance contained in the Instance Set.

e getInstances. Returns an array with all the instances of the Instance
Set.

7.3.2 Instance

The objects of this class represents instances of the data sets. Its pubic
methods are:

e getInputRealValues. Returns an array containing all the input values
of the instance (only the positions with INTEGER or REAL attributes
values will produce a value).

e getInputNominalValues. Returns an array containing all the input
values of the instance (only the positions with NOMINAL attributes
values will produce a value).

KEEL - Reference Manual Page 28 of 31

API Dataset Description of the classes

e getInputMissingValues. Returns a boolean array defining which in-
put values are missing.

e getInputRealValue. Returns the value of a concrete input attribute
(only the positions with INTEGER or REAL attributes values will
produce a value).

e getInputNominalValue. Returns the value of a concrete input at-
tribute (only the positions with NOMINAL attributes values will pro-
duce a value).

o getInputMissingValue. Returns a boolean value defining if the input
value is missing.

e getOutputRealValues. Returns an array containing all the output
values of the instance (only the positions with INTEGER or REAL
attributes values will produce a value).

e getOutputNominalValues. Returns an array containing all the output
values of the instance (only the positions with NOMINAL attributes
values will produce a value).

e getOutputMissingValues. Returns a boolean array defining which
output values are missing.

e getOutputRealValue. Returns the value of a concrete output attribute
(only the positions with INTEGER or REAL attributes values will
produce a value).

e getOutputNominalValue. Returns the value of a concrete output
attribute (only the positions with NOMINAL attributes values will
produce a value).

e getInputMissingValue. Returns a boolean value defining if the out-
put value is missing.

e getAllInputValues. Returns an array containing all the input values.
REAL values are returned as double values. INTEGER values are
casted to double. NOMINAL values are transformed to INTEGER and
casted to double.

e getAllOutputValues. Returns an array containing all the output val-
ues. REAL values are returned as double values. INTEGER values
are casted to double. NOMINAL values are transformed to INTEGER
and casted to double.

KEEL - Reference Manual Page 29 of 31

API Dataset Description of the classes

7.3.3 Attributes

Attributes is an static class which stores the definitions of the attributes
represented in the data set. It contains an array of Attribute objects, and two
additional arrays storing references about the input and output attributes.
The order of the attributes stored is the same order than it was found in the
input data file.

Its public methods are:

o getInputAttributes. Returns an array containing all the input At-
tributes.

o getOutputAttributes. Returns an array containing all the output At-
tributes.

e getInputAttribute. Returns a single input attribute.
o getOutputAttribute. Returns a single output attribute.

o getAttribute. Returns a single attribute, defined neither as input nor
as output attribute.

e getNumlInputAttributes. Returns the number of input attributes.

o getNumOutputAttributes. Returns the number of output attributes.

e getNumAttributes. Returns the number attributes, including input,
output and undefined ones.

7.3.4 Attribute

The Attribute class contains the definition an attribute of the dataset. Its
public methods are:

e getType. Returns a integer value defining the type of the attribute (the
type is defined as NOMINAL, INTEGER or REAL).

o getName. Returns the name of the attribute.

e getMinAttribute. Returns the minimum value of the attribute (only
available in INTEGER or REAL attributes).

KEEL - Reference Manual Page 30 of 31

API Dataset Description of the classes

o getMaxAttribute. Returns the minimum value of the attribute (only
available in INTEGER or REAL attributes).

e getNominalValuesList. Returns an array with all the values defined
for the attribute (only available in NOMINAL attributes).

e convertNominalValue. Converts a nominal value to its representa-
tions as integer (an integer between [0...N-1, where N is the number
of values defined for the attribute).

e getDirectionAttribute. Returns an integer showing if the attribute
is defined as input attribute (INPUT), output attribute (output), or
undefined (DIR_NOT_DEF)

e getNewValuesInTest. Returns n array with the new values of the
attribute observed in test data.

KEEL - Reference Manual Page 31 of 31

	Basic KEEL developement guidelines
	Introduction
	Developing a new method
	Reading of the configuration file
	Developement of the method
	Writing the output files
	Registering the method in KEEL
	Making the use case files
	Building the executables

	Method Description files
	Header
	Parameters
	Example of use

	Method Configuration files
	Input files
	Output files
	Parameters
	Example of use

	Data files
	Header
	Data
	Example of use

	Output files
	Example of use

	Use Case files
	Name
	Reference
	General description
	Example
	Example of use

	API Dataset
	Data files grammar
	Semantic restrictions of the data files
	Attributes
	Inputs and outputs definition
	Missing values
	Train and test files

	Description of the classes
	InstanceSet
	Instance
	Attributes
	Attribute

