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3.1. Introduction

The emergence and the improvement of remote sensing, fasgrailation, air-
borne and spaceborne sensor systems as well as other kisdsto$urvey tech-
nologies has considerably enhanced our means to exploréoacallect data.
However, this rapid increase in data results in more timeco for storage as
well as for the data analysis. At the same time, a lot of usefgermation can hide
valuable information. These observations force classifinagsystems to focus on
elaborated and sophisticated algorithms to overcomedlisl data growth.

For many years, the design of efficient and robust image iitzdson al-
gorithms has been the most important issue addressed byea@nsing image
users. Strong effort has been devoted to elaborate newifidagsn algorithms
and improve techniques used to classify remote sensingamasjng traditional
and statistical techniques such as Support Vector Macfifihes neural networks
[16,[21]22]. But, to our knowledge, relatively few reseanshin the evolutionary
community have considered how classification rules mightiiseovered from
raw and expertly classified images. Only some works have deea using ge-
netic programming approadh(15]28], but no papers have jpalglished about the
effectiveness of learning classifier systems in thisflierd discover classification
rules the unique source of information is a remote sensiragérand its corre-
sponding identification furnished by an expert. Generdlly itmages, registered
by various satellites (e.g. SPOT, CASI, Quick Bird), contadluminous data.
Sometimes they are very noisy due to the presence of varietaslslin a high
spatial resolution or unfavorable atmospheric conditianthe time the images
were acquired. These data can embrace different cameragharious spectral
and spatial resolution§ I8, 124,132]. This chapter prestgspotential contri-
bution of evolutionary-based techniques to discover thestu_earning classifier

1This review concerns the main conference on learning dlessiystems|WLCS(International
Workshop on Learning Classifier Systems) from 1992 to 2005
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systems can produce accurate, robust and maximally spelasification rules
able to deal with the noisy artifacts contained in remotesgnimages.

The aim of this chapter is to describe a process of design alidition of
evolutionary classifiers applied to remote sensing imagh&s system is data-
driven because it generates classification rules able fot #temselves according
to the available data and expertises, and it distributeg)tizatity of rules in an
optimal way to describe each class according to the contglexithe data. In
general, classification rules are discovered from the bskegdul classifier system
[12,[35]. In remote sensing, the initial population of clfisss is randomly created
from images and given classes, and then evolved by a getgaidtam until the
acceptable solution is found.

In remote sensing literature, several classification agghies are presented,
namely:

e pixel-by-pixel: each image pixel is analyzed independewitthe others
according to its spectral characterisficl[14],

e zone-by-zone: before classification, the pixels are agdeeljnto zones,
the algorithms detect the borders of the zones, delimit thgntheir
texture, their repetitive motiveS119],

e by object: this is the highest level of recognition, the aitijons classify
semantic objects, the algorithms detect their forms, g&acaéproper-
ties, spatio-temporal relations using the background dokraowledge

[@7).

Our approach is based on spectral data of pixels; thered@megvered clas-
sification rules are only able to find spectral classes réthen semantic ones.
This spectral component of class description is essetiaiell-recognized the-
matic classes. It should be noted that the proposed classiBeem may be easily
adapted to more sophisticated object representations.

To validate our approach a system callésee YoyICU) has been used. In
the ICU, we have adapted and extended ideas developed irethkvown classi-
fier systems such as XCK5]35], the S-classifiers, and "Fuzzyldssify System"
[25]. We have also been inspired by the works of Ri@ld [27] oatification and
penalization, and of Richards]26] on the exploration ofghace of classifiers. To
demonstrate the performance of our classifier system, théhes been compared
with XCS-R and two popular methods, one based on neural mkesemd the other
based on Support Vector MachingE[7, 16]. XCS-R is a systesmdan XCS, inte-
grating the concept of continuous valugs|[36]. XCS is a liearolassifier system,
developed by[[33,-34], that evolves a rule set online basedrediction accu-
racy and a niched genetic reproductibnl[20]. The classifinaystems have been
tested in the framework of the European TIDE projELt [3] opdrgpectral remote
sensing images covering the region on Venice.

The chapter is structured as follows. The basic terms anplepties of hy-
perspectral images are introduced in the section 2. Thése8tgives general
ideas about what is a « good » classifier system in remoterggnie section 4
describes our algorithm ICU. In this section, the main congmts and the quality
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measures of the method are explained. The section 5 drawsaineprinciples of
XCS-R and the adjustments which were made to make it ableabvdth these
data. The algorithms are evaluated on remote sensing intagesing the region
on Venice in the framework of the European TIDE projéct [fjeTresults of the
comparison between ICU, XCS-R and two statistical meth889{ and NN), are
presented in section 6. And finally, section 7 concludes Xpeementations and
indicates the perspectives of the future research.

3.2. Hyperspectral remote sensing images

A hyperspectral image is a set of two dimensional arrbys, s where(X,Y)

is respectively the width and the height of the image &rtie number of spec-
tral channels (or spectral bands). The téryperspectratefers to an image which
includes more than 20 spectral bands (similar to those mexiby ROSIS and
DAIS [2]). Conversely, the termultispectralis used in the case of a low number
of spectral bands, as CASI and Quick Bird remote senBalsf3@lue!(z,y, s)

in this array is the reflectance observed on the pixel longtioy) at the wave-
length corresponding to the spectral charmné reflectance value corresponds to
the intensity of the response obtained from the ground. patispace of a clas-
sification problem can be viewed as an ordered vector of ne@lbers. For each
pixel, the spectral signature of this pixel was used. Fififleshows the spectrum
of reflectance of a pixel from a hyperspectral sensor (typ€I8)). Each spectral
channel has roughly 10 nanometers in width.

The image data is very voluminous; typically 20 to 200 sp@ahannels in
an image and their size can reach 8000 x 12000 pixels. Soegtimalf of bands
is noisy because of sensor defects or atmospheric absoqdtieflectance value
in low wavelengths (see figufe_B.2).

To illustrate our approach, two kinds of hyperspectral ieglgave been used:

CASI data: Generated by the airborne spectrometer CASI (Compact Air-
borne Spectrographic Imager), with a size of 1175x673 pj»288 spec-
tral channels (412 - 957 nm), and a high resolution (1.3mis Tthage
has been pre-processed by geometric correction and wafgpegifi-
cally, first order polynomial warping and nearest neighleesampling).

MIVIS data: Generated by the MIVIS sensor (Multispectral Infrared and
Visible Imaging Spectrometer) embarked on a satelliteh aitsize of
397x171 pixels, 92 to 102 spectral channels (433 - 2478 nrmd)adigh
resolution (2.6m). Same pre-processing has been applieeface.

Learning and testing were applied on subsets of these im&gésets con-
tained 142x99 points, and only 1540 points were validatechtoppan ground
truthing (expertise ratio: 11%). Then, according to thedadlon strategies used
(hold-one-out, cross-validation), testing sets repre26fo to 50% of the origi-
nal validated image points. Figut€ 3.3 shows Quick Bird datahe Lagoon of
Venice and the corresponding set of validated points. Toengle is the area in
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Figure 3.1. Spectrum of reflectance observed for a pixel ftwgrhyperspectral sensor MIVIS

Figure 3.2. Typical noisy channels : respectively Strasppgband number 42 and number 59 from
DAIS) and Lagoon of Venice (band 45 from DAIS)

which all validated points are situated. It should be natitteat the proportion of
these points to the whole image is very small - about 0.01%.

3.3. Definition of a system of classifiers in remote sensing

Generally speaking, a system of classifiers integrates sliaibarning and evolu-
tion based computing. Classification rules are symbolicesgions and describe
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Figure 3.3. Quick Bird data of the Lagoon of Venice and theasponding set of validated points
(ground truthing)

conditions to be held and actions to be taken if the conditeme satisfied. Qual-
ity of the rules is evaluated according to their classifmaperformance. Here, we
must underscore the fact that the rules are not introducedgrpgrammer or by
an expert.

A system of classifiers is called evolutionary if it is ableadapt itself to
the environment. This means that it can modify its knowledqge its behaviour
according to the situation. For example, in remote sensirggsize of the classes
may evolve in one of two ways: (1) if, after an initial classifiion, there remain
non-classified pixels, or (2) if there are pixels belongimgéveral classes (mixed
pixels). When a classifier integrates one of these pixelm®ar another class,
it is necessary to dynamically adapt classification ruleshis way, certain rules
that treat only the simple cases (not mixed pixels) will beeaiseless, and new
rules are necessarily created for other cases.

From a functional point of view, a classifier can be definedragearepresent-
ing a piece of knowledge about a class, and may be a condiggpeession, such
asif <conditions then<actior>. In the early classifier systenis[35], each part of
a rule was a binary message, encoding elementary informatioh as a value,
colour, form, shape, etc. Thedndition$ part described an entry message in the
system, corresponding to conditions that must be fulfilfedrder to activate this
rule. The ‘action’ part defined the action to be carried out when the appropri-
ate conditions were satisfied. This binary encoding schemetiwell adapted to
image classification rules.

One of the reasons for this is based on the domain of spechaéy that
may be assigned to a pixel (from 0 to 255 for 8-bit pixels, @nfrO to 65000
for 16-bit pixels). Of course, binary encoding of rule cdratis is possible but
the rules would be difficult to understand. Instead, we as$isat the evolved rules
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must be rapidly evaluated and easy to interpret by any uses. isult, condition
representation using the concept of an interval could bg &dequate for remote
sensing image classification. In terms of machine learrtimg rules have to be
maximally specific generalizations, meaning that they iaeever the maximum
pixels belonging to a given class and the minimum pixels tgiog to another
classes.

Before rule specification is explained, recall that a pizedricoded as a spec-
tral vector, defining a value of reflectance for thdéands of the remote sensing
image:

< pixel >:= [by, ba, ..., by) 3.1)

In our system, the condition for any rule is built on the cqrtaaf spectral
intervals defining a given band, corresponding to a givesscl8uch intervals are
a pair of integer numbers, between 0 and the maximum possihie for a pixel
of a given band (i.e. 65536 for the pixels defined on 16 bitk)s Solution allows
to partition the space of the spectral values in two rangpesfitst containing the
pixel values which corresponds to a given class, and thensiecontaining the
remainder.

To precisely specify the class definition, a set of interigltefined for each
band of the remote sensing image. Taking into consideratidrands, the condi-
tion part is defined as a set of hyper-rectanglesliti space:

n k
< condition>:= A\ \/ m! <b; < M/ (3.2)

i=1j=1

wherem? andM? denote, respectively, the minimal and maximum reflec i
values allowed for a pixel belonging to a clasgor band:. k is a fixed parameter
which defines the maximum number of disjunctions allowed.

The intervals[mff; M,f] are not necessarily disjunctive. By experiments, we
have found that if we allow the genetic algorithm to create-d@sjunctive inter-
vals, instead of merging them, the results of genetic opesatre more interest-
ing. We have noticed that merging intervals significantiyigishes the number
of intervals, and in the same time reduces the possibilibesreate more effi-
cient rules. The example below illustrates a concept ofrvialemerging: £ =
[11;105] or [138; 209] or [93; 208] corresponds after merge operatiortte [11; 209 N

To satisfy a rule, a pixel has to match at least one spectieivial for each
band. Logically speaking, to associate a pixel to a classalues have to satisfy
the conjunction of disjunctions of intervals that define aditon part of the clas-
sification rule. FigurE3l4 illustrates an example of matglof two pixels against
the spectral class. The left figure shows graphically thetsakintervals of the
class defined by a given rule. The next two diagrams show igpeagnatures of
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two pixels: the first matches the rule, but the second does+auice, only the first
pixel of this example may be considered to be an instanceeafltiss.
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Figure 3.4. Matching spectral bands and spectral signafypieels. For instance, a real-image sample
for the rule could be (see the figure)if«40 < R < 80AND (20 < G < 300R55 < G <
85) AND 25 < B < 50 then class %, whereR, G and B are the channels of a three-bands captor.

This representation of the rule has been chosen mainly beadits simplic-
ity, compactness and uniform encoding of spectral comggaDuring experimen-
tation, this representation has demonstrated rapid ex@cot genetic operators
and efficient computing. Of course, one may specify more dexngiructures us-
ing spatial properties of the pixel, with respect to the pneighbourhood. Also,
one may include features resulting from thematic indicesathematical opera-
tors applied to pixel environment. We may also apply a germgthigramming to
identify new characteristics. These semantically extdridamalisms are interest-
ing, however they not only require more sophisticated gergterators, but also
more powerful computers to perform the calculation in areptable amount of
time.

3.4. From the rule creation to the evolution with ICU
3.4.1. Genetic algorithm

To discover a classification rule, ICU uses a Michigan-lg&rhing classifier sys-
tem representation, in which each rule is encoded by oneithdil [24]. In order
to efficiently develop the classification rules, a genetipathm initializes inter-
val values according to spectral limits of the classes desgéyl by an expert, for
valid zones of the remote sensing image. Initial classificatules are created
based on the extreme maximum and minimum values for definectrsp inter-
vals, taking into account every class. It should be notetiiahis initialization,
rule searching is considerably reduced, and initial irdknare very close to the
final solution. During this process, the initial spectraiilis are slightly perturbed
by adding a random value to lower and upper spectral limiendd, the initial
population of classification rules is quite diversified.

This initial pool of classifiers is evolved from a genetica@ighm. Our system
searches for a best classifier for each class, independ@nthajor reason for
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choosing this procedure is the efficiency of computationat is, the process of
rule discovery is not perturbed by other rules.

The quality of classification rules is based on a comparigdhease results
with the image classified by an expert. If pixels covered leydlassifier perfectly
overlap those indicated by an expert, then the system assligrhighest quality
value to the classifier; otherwise, in the case of some migmred, the quality
factor is reduced (between 0 and 1). An associated fithessidmwill be detailed
in the next section. During the evolution process, the ralesselected for the
crossover according to the quality for a given class. Thegss of rule evolution
is defined in the algorithm[A1 below.

ALGORITHM Al
PROCESS OF RULE DISCOVERY

{R is a classification rule an@,, P, and P, populations of classification
rules}

R:= INITIAL_RULE (images) /I Creation of a rule according to
spectral extremes
Py := INITIALIZATION (R) /I Random perturbation of rules
EVALUATION (FP) /I Calculation of the fitness function for each riile
while TERMINATION_CRITERION(F,) = falsedo

P, := SELECTION_XFp) /I Selection for crossover

P, : = CROSSOVERP) U COPY(F)

Py := SELECTION_MUTP) /I Selection for mutation

P, : = MUTATION (P;) U COPY(Fy)

EVALUATION (P)

Py: = REPLACEMENT(Fy, %) /I New generation of rules
end while

Result:R, the classification rule for a given class

As mentioned before, this algorithm must be designed to mdependently
for each class. This allows for obtaining classifiers acicaytb user requirements
without the necessity of carrying out computations for &sses with the same
level of quality. This also allows for the maintenance ofyiwesly generated clas-
sifiers, as well as for the introduction of new ones. Furttier,user may define a
hierarchy of classes and specialize some classifiers wasfgecting newly created
sub-classes with different levels of classification qyalit

3.4.2. The evaluation function

The evaluation function serves to differentiate the qualitgenerated rules and
guide genetic evolution. Usually, this function dependsrsjly on application
domain. In our work, evaluation is based on the classificatibtained by the
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classifier {y;|e) and the expertly given classificatiofekper}. TableL3] defines
the values necessary to compute the evaluation function.

Image classified by the classifi& (I;1e)
No. of pixels activating? | ... non activating?
Pixel classified by the| True é’;ﬁ g;“pl
expertE (Iexperd | False eTTugﬁ ;"Tupl
Table 3.1. Characteristics of the evaluation function

In a given system, the evaluation function is computed aslanbed score
between sensitivity and specificity, two popular qualityasgres in remote sens-

ing:

Nyinat = aNejass + (1 - Q)Nclass (3.3)
P e Pzl
whereN;iqss = W;—Pl is the sensitivity andV_—— = P prn 1S the
ex ex) eTp eTp

specificity.« is called the adjusting coefficient, which is used for certdasses
that are under- or over-represented. By default, the vdltrésocoefficient is equal
to 0.5.

The proposed function has a number of advantages; it is et of the
pixel processing sequence, invariant of the size of classesefficient for class
discovery with a highly variable number of pixels.

The evolution process converges according to some stafistiiteria indi-
cating if the current classifier is near to a global optimunif éine population of
rules will not evolve anymore. The termination criteriortloé algorithm leans on
the statistics of classifier quality evolution. In our systeve take into consider-
ation not only the evolution of quality of the best and therage classifiers, but
also the minimum acceptable quality defined by a user and @nmaarumber of
generations to run. If one of these criteria is satisfiedy the process is stopped.

The most difficult determination to make is whether the qualf a classifier
is not continuing to evolve. To detect stabilization of thelity measure, we have
based our heuristics on statistics regarding quality eimiof the best classifier.
For example, leQ); be the quality of the best classifier obtained during thekast
generations, an@, be the quality of the best classifier of the current genematio
The algorithm is interrupted if the following equation igisted:

—Q, <E (3.4)

ZkP=1 Qk
P

where P represents the maximum period of quality stabilizatiord &ahis a
maximal variation of this stabilization compared with therent quality.
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It is important to have an initial population of classifierghin the vicinity
of the solution to be found. Two algorithms have been prop@diewing for the
generation of a diversified pool of classifiers close to theeeihidden classifica-
tion rule. The first, calledsenMinMax creates maximum intervals covering the
expert rule, and the second algorithm, cal®@enSpectrpintegrates the spectral
distribution density and interval partitioninig[24].

3.4.3. Genetic operators

One of the most important tasks while designing a genetiorihgn is to invent
operators that will create new potential solutions. All of @perators have been
specialized on classifier representation, and they have e&ated on remote
sensing images. With respect to software engineering, éhetg algorithm has
been structured into layers corresponding to genetic tipesa(e.g. selection,
mutation, crossover and replacement). The system is vieseal collection of
layers with data passed from layer to layer. Layer executidows from one to
another, and genetic operations are invoked in the sameseguThis modular
approach makes program maintenance and future extensigisensier.

Selection of classifiersin general, selection is the operation of allocating
reproductive opportunities to each classifier. The repctideiforce of a classifier
is expressed by a fitness function that measures the retpisi@y of a classifier
by comparing it to other classifiers in the population. Thame many methods
for selecting a classifief][6]. In our system, the selectiparator is applied in the
following cases:

e choosing the classifier to be reproduced for crossing, omgut

e repetition of the classifier, depending on whether it congsl¢he ge-
netic pool after having completed the crossover;

e preservation of a classifier from the former genetic pooltfer next
generation;

e elimination of a classifier in a newly created genetic poadshon an
assigned rank.

Selection strategies are well known: the roulette wheekiray, elitism, ran-
dom selection, the so-called tournament, and eugenictegie©Our experiments
have shown that roulette wheel selection is most advantegfeo the reproduc-
tive phase, but the tournament strategy with elitism is @sthe generational
replacement scheme.

Crossover of classifiers.Crossover requires two classifiers, and cuts their
chromosome at some randomly chosen positions to produceffapring. The
two new classifiers inherit some rule conditions from eactepiaclassifier. A
crossover operator is used in order to exploit the qualifeke classifiers.

Each result of the crossover process has to be validateilatiah of the
various rule attributes (border limits violation, overpes, etc) is carried out by a
process of interval merging, as shown in fighird 3.5.
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After crossover After merging
[10:13]0 [24:36] 0 [5567] > [1023]0 [4853] 0 [5567] > [1013]0 4853l [5567]
[7:27]0 [4853] 0 [8193] [7:27]0 [2436] 0 [81,93] [7:36]0 [8193]
A A

Figure 3.5. Interval merging after crossover operationthVl real-image, the crossover consists to
exchange the tests corresponding to given parts of therspecf a sample. Interval merging does not
change the mathematical interpretation of the test.

However, merging not only decreases the number of intemvaliee rules, but
also generates some information loss. In fact, in order tade& premature con-
vergence of rules, it is generally important to preservétierfollowing generation
two distinct intervals instead of a single aggregated ometh@ other hand, it is
interesting to note that the positive or negative effeciointerval on the quality
of the rule can be related to other intervals encoded in thssification rule. By
checking the quality of the obtained rules, we finally diss@d thahot merging
is a better solution if the user is not concerned by the comguime because it
requires more iterations.

Mutation of classifiers. The mutation operator plays a dual role in the sys-
tem: it provides and maintains diversity in a population lafssifiers, and it can
work as a search operator in its own right. The mutation peega single classifi-
cation rule and it creates another rule with altered cooitructure or variables.
The mutation operator may be applied on three levels: barel, Imterval level
and border level.

Band mutation consists of a deletion of spectral bandwidth chosen clas-
sification rule. Its interest is twofold; firstly, the band tation type allows for
simplification and generalization of a rule; secondly, ibak for the elimination
of noisy bands that frequently appear in hyper spectral @saghe existence of
noisy bands significantly perturbs the learning processedlsas the process of
evolution convergence.

Interval mutation allows for a chosen band to add, elimiateut an interval
in two spectral ranges. In case of addition, the new rule ipleted by a new
interval centered randomly with a user-defined width. Thérogiof an interval is
done by random selection of a cutting point within the ingiffor example, the
cutting of [10; 100] can generate two intervalgt0; 15] and [15; 100]). Mutation
such as this allows for breakage of continuous spectralesmgnd, this allows
for the definition of a spectral tube in which spectral valoéthe pixels can be
assigned to a given class.

Finally, border mutation modifies both boundaries of anrirgke This muta-
tion refines the idea of targeting spectral tubes carriecbguhe other types of
mutation. It is worthwhile to note that the mutated rules systematically vali-
dated.
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In our system, mutation operators are dynamically adaptédrining (i.e. we
test different parameters for the same training set and et #ie best choice by
looking at a testing set). Adjustment is related to the pbdlig of each mutation
operator according to its current effectiveness.

Generational replacement.The generational replacement is an operation
that determines which of the current classifiers in the patpan is to be replaced
by newly evolved classifiers. According to the algorithiid Afe new generation
of classifiers is created from a population of parerits) @nd their children af-
ter the crossover and the mutation operatiafg.(In our system, the following
replacement strategies are applied:

o the revolutionary strategy in which only the population lo¢ children
completely replaces the parent populatiéh)(

e the steady-state strategy in which new classifiers aretatber the new
population by replacing the worst, oldest member, or thetrsiosilar
members, or by preserving the best classifiers (elitism).

There exist other replacement strategies integratingnfstance the heuris-
tics where the best individual of the previous populatioplaees the worst one
of the current population or the heuristics where the newviddals having a
performance higher than a certain threshold are insertedeler, both of these
strategies present the risk of having individuals remaith@population. This is
not necessarily a problem exceptin the case of a weak gqrwailén which some
individuals of average performances that would profit frommiunity.

3.5. From the rule creation to the evolution with XCS-R

XCS and XCS-R are learning classifier systems (LCS). LCSslga@ithms for
symbolic learning. The main difference between LCSs anérd#éarning tech-
niques like neural networks and genetic programming is gtiuale for collab-
orative learning. The objective is to create a chain coigia given number of
classifiers, so that the whole chain will be the completetgwiwof the problem.
The information will be transmitted from a link to an otherepmusing messages
to interpret.

XCS evolves a set of rules, the so-calfexpulation of classifiersThis method
is presented for comparison with ICU. Rules are evolved bytans of a genetic
algorithm. A classifier usually consists of a condition andhation part. The con-
dition part specifies when the classifier is applicable aedsittion part specifies
which action, or classification, to execute. In contrasth® original LCSs, the
fitness in the XCS classifier system, introduced by Wilgor],[B3based on the
accuracyof reward predictions rather than on the reward predicttbemselves.
Thus, XCS is meant to evolve not only a representation of dimapbehavioral
strategy, or classification, but rather to evolve a repriegem of a complete pay-
off map of the problem. That is, XCS is designed to evolve agggntation of the
expected payoff in each possible situation-action contlaina
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Since our system is confronted with real-valued data inghigly, we apply
the real-valued extension of XCS (XCS-R) introducedn [3&cently, several
studies have been reported that show that XCS performs aailpavell to sev-
eral other typical classification algorithms in many staddiata mining problems
(5 4,13].

This section provides a short introduction to the XCS cfasssystem. For
a more detailed introduction to XCS and XCS-R the interesteder is referred
to the original papei[33], the real-valued extensiod [3&] ¢he algorithmic de-
scription [9].

3.5.1. Overview of the algorithm

As mentioned, XCS evolves a population [P] of rules, or dfeess. Each classifier
in XCS consists of five main components:

(1) The condition part specifies the subspace of the inputsipawhich the
classifier is applicable, or matches. In our real valued lgraba con-
dition specifies a conjunction of intervals, one for eachitaite. If the
current problem instance lies within all specified intesy#the classifier
matches.

(2) The action part specifies the advocated action, or €iesson.

(3) The payoff prediction estimates the average pay-ofbantered after
executing action A in the situations in which the conditi@mtpnatches.

(4) The prediction error estimates the average deviatiorermr, of the
payoff prediction.

(5) The fitness reflects the scaled average relative accofahg classifier
with respect to other overlapping classifiers.

Learning usually starts with an empty population. Giverrent input, the
set of all classifiers in [P] whose conditions match the inputalled the match
set [M]. If some action is not represented in [M], a coveringamanism is ap-
plied. Covering creates classifiers that match the curngnittiand specify the not
covered actionfs Given a match set, XCS can estimate the payoff for eachpossi
ble action forming a prediction array P(A). EssentiallyAP(eflects the fithess-
weighted average of all reward prediction estimates of thssdfiers in [M] that
advocate classification A. The payoff predictions detestire appropriate clas-
sification. During learning, XCS chooses actions randoilying testing, the
actiona,, ., with the highest value R(,..) is chosen.

2ICU benefits from an initialization creating directly goadtial individuals by looking at the
whole training set. However, XCS has this covering mechanigat could create good individual but
by looking only at one sample of data. It is difficult to stathigh technique is better, because this
strongly depends on the implicit patterns contained in the.dThe difference of the accuracies of
the two algorithms observed in the case study is caused bgréprocessing of the data (if applied)
and the initialization phase. More theoretical studiesregeired to predict, in the general case, which
method is more suitable.
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3.5.2. Reinforcement and discovery components

XCS iteratively updates its population of classifiers widspect to the succes-
sive problem instances. After the classification is setetig the means of the
prediction array and applied to the problem, scalar feekilsa@ceived. In a clas-
sification problem, classifier parameters are updated w#pect to the immediate
feedback in the current action set [A], which comprises lalésifiers in [M] that
advocate the chosen classification A. After rule evaluatind possible genetic
algorithm (GA) invocation, the next iteration starts.

The aforementioned covering mechanism ensures that alhadh a partic-
ular problem instance are represented by at least onefitasBiach attribute of
the new classifier condition is initialized using parametever-rand that speci-
fies the maximal interval the condition comprises in anlatte. XCS applies a
GA for rule evolution. A GA is invoked if the average time sinthe last GA
application upon the classifiers in [A] exceeds a threshbliet GA selects two
parental classifiers using set-size relative tournaméecten [€]. Two offspring
are generated reproducing the parents and applying cres@oviform crossover)
and mutation. Parents stay in the population competingtivéhr offspring. In the
insertion process, subsumption deletion may be apliept{S<tress generaliza-
tion. Due to the possible strong effects of action-set suipgion, we only apply
GA subsumption, which searches for an accurate, more dex@saifier that may
subsume the offspring. If such a more general classifieruadothe offspring is
discarded and the numerosify[34] of the subsumer is ineckd$e population of
classifiers [P] is of fixed size N. Excess classifiers are ddlffbm [P] with prob-
ability proportional to an estimate of the size of the ac8ets that the classifiers
occur in. If the classifier is sufficiently experienced asdiiness F is significantly
lower than the average fitness of classifiers in [P], its dmgirobability is further
increased.

3.5.3. Rules selection

As in ICU, the same pixel may activate several rules codimgliiferent classes.
This behavior can be constrained for solving problenmesto-onelassification
(one pixel always corresponds to one class, contrary tortkeeto-Nclassification,

in which one pixel may correspond to several classes). Twihods (MaxConfi-
dentandScoredConfidehtvere tested, asking the pool to give a unique class for
each pixel:

(1) In the first one, only the rules which have a correct sefifience are
considered, in other terms, payoff prediction should beaigrethan a
given threshold (fixed in our experiments to the half of theximmaim
value of payoff prediction for the current problem). Then thost fre-
quent class obtained from rules which had matched the @xeturned.
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(2) In the second one, all the rules which have matched thel pbe con-
sidered. For a class a score is computed as follows for each rule

g _ S P.xF,
T ZFT

where P, is the prediction payoff of the rule and F.. its fitness.
The action of the rule with the best is returned.

These two methods have been experimented for differenetsilo$ CASI
data and for a pre-treated expertise set as follows: if moae bne class was
affected to the same pixel, only the dominant class wasnetisaccording to the
percentage of its concentration given by the expert. Hengextual classification
(i.e. looking at the neighbor pixels) can help to overconig kind of ambiguity.
Many cases of ambiguities occur when two classes have the Spectra whereas
they can be discriminated by the context (for instance, maatel shadows have
relatively low reflectance and they can be distinguishedlokihg at the classes
located around).

(3.5)

3.6. Case studies
3.6.1. Consideration with the data

The data available for this study was acquired during a fieldmaign at the end
of September 2002, for the European project TIDE (Tidalts[@ynamics and
Environment,[[B]). During this project, data was obtainexhf satellite or aircratft,
at different scales and resolutions, providingalti-level viewof the ground([2B].

A multi-level remote sensing is a useful technique to man#me areas: a global
view of the area can be identified by the satellite image, evtiie checking of a
particular area or a classification need aerial imagery. &X{pertise used in the
following supervised classification are based on a costlgrmeground truthing
(the characterization of all points are made by hand by a nuergert), and on
expert validation provided by the examination of differeavels of the data. Due
to the existence of such different sources, the expertatidid of points is not the
easiest way but it is relatively safe and relevant. Somemagans were made
about the datd[31]:

e the reference data in the learning base are truly represents the
sought classes;

o the reference data and the expert data are perfectly symzkobby geo-
referencing;

e there is no error in the reference data (incorrect or missiags assign-
ments, change in the vegetation boundaries between thetimaging
and the time of field verification, positional errors, ...).

Considering the expertise, two issues have to be addreHsedirst, the com-
plexity of the analyzed environment, particularly the effef partial volume (data
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includespixelsof non pure classes), requires that the expert selectssdel@sses
for one point (nulti-labeling. A typical supervised method handles only one class
attribute. Thus, in the case of multi-labeling, the domirddass is kept or the point
is dropped. The second mainly for cost reasons, the humaartscgn only label
very few points. The identification of the boundary of eachssland the con-
struction of convex hulls are mandatory to include more aekior pixels in the
expertise. The points can represent exactly the classtafidue class, or some-
times a corner of a different kind of vegetation cross a hugimsed to be a whole
class. Extra knowledge may be needed to select the corrgtspo

In this chapter, a remote sensing image of San Felice (Lagb@eanice) has
been chosen (figuEeZ3}.6). This image contains multispedatal (CASI 15 bands),
with 142x99 pixels, 16 bits per pixel and 1.3m terrain regolu[24]. The case
study considers a typical problem of classification for fzmnes, with only five
requested classes but including a high percentage of mixetspLearning was
carried out on 50% of the 1540 points, and then validation peatormed on the
whole data.

Figure 3.6. Reference and expert data (CASI, San Felice)

3.6.2. ICU classification

The image and statistics presented in the fiflurk 3.7 sumenauizexperiments.

The parameters (described in the sedilonB.4.3) for ICUsfel@ws: P,
= 0-71Pmut = 0-151Pmut,band = 0-31Pmut,inte7"ual = O-Zmeut,border =0.4,300
individuals, 2000 to 5000 generations and selection by fanthe crossover and
the mutation operators.

It should be mentioned that validation points do not conegrnwater. Water
can be classified quickly using standard statistical taaten with unsupervised
ones, and are beyond the interest of the experts. ICU cleséifese pixels in the
most approximate class (SPAL1), but quality of these areasatrrelevant (at the
south and the right border). SPA2 is a pure class of Spartimdtivha and SPAL
contains Spartima in a non-dominant way. The only point wH&U disagrees
with the expertise is the small spot at the right lower corf8?A1l instead of
SPA2, see the figuleZ3.7). The very narrow resemblance ofpibetrs of these
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Classification by the expert
SAR2 [ LISR [SPA2 [SPAL[LIM1] Q..
SAR2| 222 0 0 0 5 98%
‘vg LISR 59 149 0 0 21 | 65%
£ = | SPA2 0 0 382 162 8 69%
5% SPA1 0 0 0 28 0 |100%
C | LIM1 0 0 3 33 468 | 93%
Quens | 79% [100% | 99% | 13% | 93%

Figure 3.7. Classified image and confusion matrix for ICU

two classes explains that. Classification is quite globadiyect (-index of 0.81,

average accuracy of 81.1%). The figlird 3.8 shows the map ofapge designed
to test overlapping rules. The whiter a pixel, the more ralesactivated. If no
rule can be used, the pixel is shown in red (in fact in the ct®r depending

on your printout). The map of overlaps is automatically gates, it shows pixel
classes and the degree of mixing, without any external kedgd. The image
below demonstrates, for instance, that no knowledge abatgnevolved.

Number of matched
rules for a pixel:

BB

0O 1 2 3 4 5

Figure 3.8. Map of the overlapping zones, produced only iy IC

3.6.3. XCS classification

The classification with XCS shows quite good results. Thegienand statistics
presented in the figuf€=3.9 illustrate our experiments.

The same remark should be made about the color of what orevbglbeing
a water class, which actually is not relevant. ICU and XCS firelsame classes
for the same points, including the border of the salt margtfickvcontain a lot of
mixels (a composition of several species on the same piX&lp has spent many
classifiers to separate SPA1 and SPA2 correctly. Nearly lassitier was used to
describe each pixel. Nevertheless, a better global acgwas obtained«-index
of 0.88, average accuracy of 87.7%). XCS is then better tdh with a less
accurate initialization procedure, because the pattethisfdata could be better
learned with local initializations (covering operatorathusing a global initializa-
tion (GenMinMaxor GenSpectr@f ICU). But global initialization is more fast.
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Classification by the expert
SAR2 |LISR [SPA2 |SPAL |LIM1 | Qppa
0

SAR2 | 266 12 0 3 95%

° g LISR 11 133 0 0 2 91%
£ £|SPA2 0 0 353 83 1 [81%
2 ﬁ SPA1 0 0 27 106 3 78%
G| LIM1 4 4 5 34 493 |91%

Qsens | 95% [89% | 92% | 48% | 98%

Figure 3.9. Classified image and confusion matrix for XCS

The typical learning time with ICU on this dataset is abol& &¥nutes, against
4-7 minutes on a 3 GHz CPU.

3.6.4. Comparison between ICU and statistical classifiers

To attest that performance of ICU is comparable to otherrélyns known to be
really efficient in this domain 7,16, 2, 22], this algorithvas tested on two
data sets. These data correspond to two images of San Hedigedqn of Venice),
with different spectral and spatial resolutions, nameh8C#ensor (date: 2002, 15
bands, 754x293 pixels, resolution i3, 6 classes) and the hyperspectral MIVIS
sensor (date: 2003, 20 bands, 396x170 pixels, resolutm2, 7 classes).

The results for the testing set (50% of all of the data) arsemted in the
table[32. Accuracy is the mean of the diagonal of the confusiatrix and the
k-index characterizes a correctly distributed confusiotrixgl on the diagonal,

0 everywhere else).

Accuracy for CASI g-index) | Accuracy for MIVIS (k-index)
ICU 0.990 (0.99) 0.884 (0.88)
SVM 0.974 (0.97) 0.978(0.98)
Neural network| 0.893 (0.89) 0.878(0.88)

Table 3.2. Results obtained for the two images.

For ICU, the parameters was the same that those descrideslse¢tioh3.612.
For the algorithm based on neural networks, a learning rfaelo 100000 itera-
tions, 1 hidden layer of 7 to 15 neurons, an incremental ntetbothe learning,
and a symmetrical sigmoid activation function were cho3ée. exit layers repre-
sent the expert continuous values and there are as manyeexitms as there are
classes to be learned. The free librarfdnnamed the Fast Artificial Neural Net-
work Library (FANN, [1]), was used. The chosen neural netwmpology was
simple but efficient. For the algorithm based on Supportdektachine (SVM),
the RBF kernel was used; and the parametéend~ were discovered for each
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data set using free software and a step by step optimizalgamithm in Python
presented on the site of the LIBSVI]10].

ICU has shown better performance than SVM and NN for the CAglge
and better than NN for the MIVIS image. The image of the MIVEhsor was
most difficult to analyze for several reasons: some additibands; less pixels
in the image, thus less samples in the training set (eachttim&hole training
set consisted of less than 2% of the image); the first bands'\éf®/are slightly
more disturbed than for CASI; and finally some classes of tadipm were no
longer present on the saltmarsh in 2004, which caused a drtgeiquality of
the training data. When the values in the data set are a kimtmoposition of
several pure classesiixelg a system based on disjunctions like ICU proves to be
more useful. Moreover, this kind of classifier would makedsgible to expose the
contents of the rules to a human expert contrary, for exanpkeneural network
(often treated as lblack boy.

To illustrate the simplicity of the formalism of the rulessdovered by our
algorithm, an example of a rule which classifies the instamdene of the class
follows:

(435 < By < 1647)A. . .A((365 < Bry < 4023)V(15643 < Bry < 48409))
A... N\ (668 < Brg < 4413) = [CLASS 4]

whereB; is the reflectance value for the bandf the considered pixel. The
typical learning time with NN on this dataset is about 1 méuwgainst 10-15
minutes for the step by step optimization of SVM on a 3 GHz CPU.

3.6.5. Summary of experiments

The three case studies have demonstrated the high capgttigyevolution-based
classifiers to interpret and classify heterogeneous angleonimages (e.g. high
dimension in(X,Y, S), large number of bands and noisy data that generate a
computational complexity ab(n?)). The quality of classification has been shown
very high even in cases of high number of noisy bands and npitxeds. It must be
noted that the quality of learning is highly related to thality of the classified
image used for rule discovery. The discovered classifinatides have been in
general simple and easy to interpret by remote sensing ®xpdrey are also
mutually exclusive and maximally specific. Nevertheleks, learning time was
relatively long due to the large image size and the chosesnpeters. Classified
images by the discovered rules have shown that the evolbtised classifier is
able to faithfully reproduce the human expertise and allgors already in use in
this domain.

3.7. Conclusion and perspectives

This chapter has detailed the evolution-based classif@esys applied to remote
sensing images. The systems have been able to discoverfxsiét.o. then. ..
class» classification rules using the fitness function based og@aassification
quality. These rules, which have been proven robust andlsitopunderstand
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by the user. The accuracy of the expert has been improvedhentltes have
been demonstrated sufficiently generic for reusing themtlargarts of satellite
images. Hence, the classifier systems can be considereaalf igterest when
compared to traditional methods of classification.

Taking into consideration image complexity and noisy déte, results of
our experiments are very encouraging. Case studies haverd¢rated that the
obtained classifiers are able to reproduce faithfully theate reality. The rules
are well adapted to recognize large objects on the imagegjeogt lands), as well
as the smaller ones (e.g. trees, shadows, edges of thengsi)diThe redundant
or noisy bands have been successfully identified by theifitxss The formalism
of rule representation has allowed the modelling of a spetiibe adapted to the
granularity of spectral reflectance.

The potential of evolution-based classifiers in remoteisgrimage classifi-
cation begins to be explored. Further investigation of thegifiers efficiency are
necessary. Currently, we are starting to work on a more dfolwepresentation of
rules including spatial knowledge, temporal relationsl hierarchical representa-
tion of objects. Contextual classification can help to oware some ambiguities,
as stated in the last section before the case studies, Buetitinique requires to
know in which order the algorithm will classify the neighbmixels. Future re-
search would be followed in this direction. We are also tgytio optimize system
performance, in particular the implementation of the ger@bcess on a parallel
machine and the tuning of its initial parameters. The cliesssystem developed
by this research work, called ICU, and other classificatimftwgare related to re-
mote sensing are currently available on our web site hgjitii-strasbg.fr/afd.
The XCS algorithm can be downloaded from the IlIliGAL web skigp://www-
illigal.ge.uiuc.edu.
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