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3.1. Introduction

The emergence and the improvement of remote sensing, aircraft simulation, air-
borne and spaceborne sensor systems as well as other kinds ofsuch survey tech-
nologies has considerably enhanced our means to explore andto collect data.
However, this rapid increase in data results in more time andcost for storage as
well as for the data analysis. At the same time, a lot of useless information can hide
valuable information. These observations force classification systems to focus on
elaborated and sophisticated algorithms to overcome this rapid data growth.

For many years, the design of efficient and robust image classification al-
gorithms has been the most important issue addressed by remote sensing image
users. Strong effort has been devoted to elaborate new classification algorithms
and improve techniques used to classify remote sensing images using traditional
and statistical techniques such as Support Vector Machines[7] or neural networks
[16, 21, 22]. But, to our knowledge, relatively few researchers in the evolutionary
community have considered how classification rules might bediscovered from
raw and expertly classified images. Only some works have beendone using ge-
netic programming approach [15, 28], but no papers have beenpublished about the
effectiveness of learning classifier systems in this field1. To discover classification
rules the unique source of information is a remote sensing image and its corre-
sponding identification furnished by an expert. Generally the images, registered
by various satellites (e.g. SPOT, CASI, Quick Bird), contain voluminous data.
Sometimes they are very noisy due to the presence of various details in a high
spatial resolution or unfavorable atmospheric conditionsat the time the images
were acquired. These data can embrace different cameras having various spectral
and spatial resolutions [18, 24, 32]. This chapter presentsthe potential contri-
bution of evolutionary-based techniques to discover the rules. Learning classifier

1This review concerns the main conference on learning classifier systems,IWLCS(International
Workshop on Learning Classifier Systems) from 1992 to 2005
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systems can produce accurate, robust and maximally specificclassification rules
able to deal with the noisy artifacts contained in remote sensing images.

The aim of this chapter is to describe a process of design and validation of
evolutionary classifiers applied to remote sensing images.This system is data-
driven because it generates classification rules able to adapt themselves according
to the available data and expertises, and it distributes thequantity of rules in an
optimal way to describe each class according to the complexity of the data. In
general, classification rules are discovered from the established classifier system
[12, 35]. In remote sensing, the initial population of classifiers is randomly created
from images and given classes, and then evolved by a genetic algorithm until the
acceptable solution is found.

In remote sensing literature, several classification approaches are presented,
namely:

• pixel-by-pixel: each image pixel is analyzed independently of the others
according to its spectral characteristic [14],

• zone-by-zone: before classification, the pixels are aggregated into zones,
the algorithms detect the borders of the zones, delimit themby their
texture, their repetitive motives [19],

• by object: this is the highest level of recognition, the algorithms classify
semantic objects, the algorithms detect their forms, geometrical proper-
ties, spatio-temporal relations using the background domain knowledge
[17].

Our approach is based on spectral data of pixels; therefore,discovered clas-
sification rules are only able to find spectral classes ratherthan semantic ones.
This spectral component of class description is essential to well-recognized the-
matic classes. It should be noted that the proposed classifier system may be easily
adapted to more sophisticated object representations.

To validate our approach a system calledI See You(ICU) has been used. In
the ICU, we have adapted and extended ideas developed in the well-known classi-
fier systems such as XCS [35], the S-classifiers, and "Fuzzy ToClassify System"
[25]. We have also been inspired by the works of Riolo [27] on gratification and
penalization, and of Richards [26] on the exploration of thespace of classifiers. To
demonstrate the performance of our classifier system, the ICU has been compared
with XCS-R and two popular methods, one based on neural networks and the other
based on Support Vector Machines [7, 16]. XCS-R is a system based on XCS, inte-
grating the concept of continuous values [36]. XCS is a learning classifier system,
developed by [33, 34], that evolves a rule set online based onprediction accu-
racy and a niched genetic reproduction [20]. The classification systems have been
tested in the framework of the European TIDE project [3] on hyperspectral remote
sensing images covering the region on Venice.

The chapter is structured as follows. The basic terms and properties of hy-
perspectral images are introduced in the section 2. The section 3 gives general
ideas about what is a « good » classifier system in remote sensing. The section 4
describes our algorithm ICU. In this section, the main components and the quality
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measures of the method are explained. The section 5 draws themain principles of
XCS-R and the adjustments which were made to make it able to deal with these
data. The algorithms are evaluated on remote sensing imagescovering the region
on Venice in the framework of the European TIDE project [3]. The results of the
comparison between ICU, XCS-R and two statistical methods (SVM and NN), are
presented in section 6. And finally, section 7 concludes the experimentations and
indicates the perspectives of the future research.

3.2. Hyperspectral remote sensing images

A hyperspectral image is a set of two dimensional arraysIX,Y,S where(X, Y )
is respectively the width and the height of the image andS the number of spec-
tral channels (or spectral bands). The termhyperspectralrefers to an image which
includes more than 20 spectral bands (similar to those produced by ROSIS and
DAIS [2]). Conversely, the termmultispectralis used in the case of a low number
of spectral bands, as CASI and Quick Bird remote sensors [30]. A valueI(x, y, s)
in this array is the reflectance observed on the pixel location (x, y) at the wave-
length corresponding to the spectral channels. A reflectance value corresponds to
the intensity of the response obtained from the ground. The input space of a clas-
sification problem can be viewed as an ordered vector of real numbers. For each
pixel, the spectral signature of this pixel was used. Figure3.1 shows the spectrum
of reflectance of a pixel from a hyperspectral sensor (type MIVIS). Each spectral
channel has roughly 10 nanometers in width.

The image data is very voluminous; typically 20 to 200 spectral channels in
an image and their size can reach 8000 x 12000 pixels. Sometimes, half of bands
is noisy because of sensor defects or atmospheric absorption of reflectance value
in low wavelengths (see figure 3.2).

To illustrate our approach, two kinds of hyperspectral images have been used:

CASI data: Generated by the airborne spectrometer CASI (Compact Air-
borne Spectrographic Imager), with a size of 1175x673 pixels, 288 spec-
tral channels (412 - 957 nm), and a high resolution (1.3m). This image
has been pre-processed by geometric correction and warping(specifi-
cally, first order polynomial warping and nearest neighbor re-sampling).

MIVIS data: Generated by the MIVIS sensor (Multispectral Infrared and
Visible Imaging Spectrometer) embarked on a satellite, with a size of
397x171 pixels, 92 to 102 spectral channels (433 - 2478 nm), and a high
resolution (2.6m). Same pre-processing has been applied asbefore.

Learning and testing were applied on subsets of these images. Subsets con-
tained 142x99 points, and only 1540 points were validated byhuman ground
truthing (expertise ratio: 11%). Then, according to the validation strategies used
(hold-one-out, cross-validation), testing sets represent 20% to 50% of the origi-
nal validated image points. Figure 3.3 shows Quick Bird datafor the Lagoon of
Venice and the corresponding set of validated points. The rectangle is the area in
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Figure 3.1. Spectrum of reflectance observed for a pixel fromthe hyperspectral sensor MIVIS

Figure 3.2. Typical noisy channels : respectively Strasbourg (band number 42 and number 59 from
DAIS) and Lagoon of Venice (band 45 from DAIS)

which all validated points are situated. It should be noticed that the proportion of
these points to the whole image is very small - about 0.01%.

3.3. Definition of a system of classifiers in remote sensing

Generally speaking, a system of classifiers integrates symbolic learning and evolu-
tion based computing. Classification rules are symbolic expressions and describe
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Figure 3.3. Quick Bird data of the Lagoon of Venice and the corresponding set of validated points
(ground truthing)

conditions to be held and actions to be taken if the conditions are satisfied. Qual-
ity of the rules is evaluated according to their classification performance. Here, we
must underscore the fact that the rules are not introduced bya programmer or by
an expert.

A system of classifiers is called evolutionary if it is able toadapt itself to
the environment. This means that it can modify its knowledgeand its behaviour
according to the situation. For example, in remote sensing,the size of the classes
may evolve in one of two ways: (1) if, after an initial classification, there remain
non-classified pixels, or (2) if there are pixels belonging to several classes (mixed
pixels). When a classifier integrates one of these pixels to one or another class,
it is necessary to dynamically adapt classification rules. In this way, certain rules
that treat only the simple cases (not mixed pixels) will become useless, and new
rules are necessarily created for other cases.

From a functional point of view, a classifier can be defined as arule represent-
ing a piece of knowledge about a class, and may be a conditional expression, such
asif <conditions> then<action>. In the early classifier systems [35], each part of
a rule was a binary message, encoding elementary information such as a value,
colour, form, shape, etc. The "conditions" part described an entry message in the
system, corresponding to conditions that must be fulfilled in order to activate this
rule. The "action" part defined the action to be carried out when the appropri-
ate conditions were satisfied. This binary encoding scheme is not well adapted to
image classification rules.

One of the reasons for this is based on the domain of spectral values that
may be assigned to a pixel (from 0 to 255 for 8-bit pixels, or from 0 to 65000
for 16-bit pixels). Of course, binary encoding of rule conditions is possible but
the rules would be difficult to understand. Instead, we assert that the evolved rules
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must be rapidly evaluated and easy to interpret by any user. As a result, condition
representation using the concept of an interval could be fully adequate for remote
sensing image classification. In terms of machine learning,the rules have to be
maximally specific generalizations, meaning that they haveto cover the maximum
pixels belonging to a given class and the minimum pixels belonging to another
classes.

Before rule specification is explained, recall that a pixel is encoded as a spec-
tral vector, defining a value of reflectance for then bands of the remote sensing
image:

< pixel >:= [b1, b2, . . . , bn] (3.1)

In our system, the condition for any rule is built on the concept of spectral
intervals defining a given band, corresponding to a given class. Such intervals are
a pair of integer numbers, between 0 and the maximum possiblevalue for a pixel
of a given band (i.e. 65536 for the pixels defined on 16 bits). This solution allows
to partition the space of the spectral values in two ranges: the first containing the
pixel values which corresponds to a given class, and the second containing the
remainder.

To precisely specify the class definition, a set of intervalsis defined for each
band of the remote sensing image. Taking into considerationall bands, the condi-
tion part is defined as a set of hyper-rectangles in aR

n space:

< condition>:=

n
∧

i=1

k
∨

j=1

m
j
i ≤ bi ≤ M

j
i (3.2)

wheremj
i andM

j
i denote, respectively, the minimal and maximum reflectance

values allowed for a pixel belonging to a classC for bandi. k is a fixed parameter
which defines the maximum number of disjunctions allowed.

The intervals[mj
i ; M

j
i ] are not necessarily disjunctive. By experiments, we

have found that if we allow the genetic algorithm to create non-disjunctive inter-
vals, instead of merging them, the results of genetic operators are more interest-
ing. We have noticed that merging intervals significantly diminishes the number
of intervals, and in the same time reduces the possibilitiesto create more effi-
cient rules. The example below illustrates a concept of interval merging:E =
[11; 105] or [138; 209] or [93; 208] corresponds after merge operation toE = [11; 209].

To satisfy a rule, a pixel has to match at least one spectral interval for each
band. Logically speaking, to associate a pixel to a class, its values have to satisfy
the conjunction of disjunctions of intervals that define a condition part of the clas-
sification rule. Figure 3.4 illustrates an example of matching of two pixels against
the spectral class. The left figure shows graphically the spectral intervals of the
class defined by a given rule. The next two diagrams show spectral signatures of
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two pixels: the first matches the rule, but the second does not. Hence, only the first
pixel of this example may be considered to be an instance of the class.
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Figure 3.4. Matching spectral bands and spectral signatureof pixels. For instance, a real-image sample
for the rule could be (see the figure): «if 40 < R < 80 AND (20 < G < 30 OR55 < G <

85) AND 25 < B < 50 then class X», whereR, G andB are the channels of a three-bands captor.

This representation of the rule has been chosen mainly because of its simplic-
ity, compactness and uniform encoding of spectral constraints. During experimen-
tation, this representation has demonstrated rapid execution of genetic operators
and efficient computing. Of course, one may specify more complex structures us-
ing spatial properties of the pixel, with respect to the pixel neighbourhood. Also,
one may include features resulting from thematic indices ormathematical opera-
tors applied to pixel environment. We may also apply a genetic programming to
identify new characteristics. These semantically extended formalisms are interest-
ing, however they not only require more sophisticated genetic operators, but also
more powerful computers to perform the calculation in an acceptable amount of
time.

3.4. From the rule creation to the evolution with ICU

3.4.1. Genetic algorithm

To discover a classification rule, ICU uses a Michigan-like learning classifier sys-
tem representation, in which each rule is encoded by one individual [24]. In order
to efficiently develop the classification rules, a genetic algorithm initializes inter-
val values according to spectral limits of the classes designated by an expert, for
valid zones of the remote sensing image. Initial classification rules are created
based on the extreme maximum and minimum values for defined spectral inter-
vals, taking into account every class. It should be noted that by this initialization,
rule searching is considerably reduced, and initial intervals are very close to the
final solution. During this process, the initial spectral limits are slightly perturbed
by adding a random value to lower and upper spectral limits. Hence, the initial
population of classification rules is quite diversified.

This initial pool of classifiers is evolved from a genetic algorithm. Our system
searches for a best classifier for each class, independently. A major reason for
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choosing this procedure is the efficiency of computations; that is, the process of
rule discovery is not perturbed by other rules.

The quality of classification rules is based on a comparison of these results
with the image classified by an expert. If pixels covered by the classifier perfectly
overlap those indicated by an expert, then the system assigns the highest quality
value to the classifier; otherwise, in the case of some mismatching, the quality
factor is reduced (between 0 and 1). An associated fitness function will be detailed
in the next section. During the evolution process, the rulesare selected for the
crossover according to the quality for a given class. The process of rule evolution
is defined in the algorithm A1 below.

ALGORITHM A1
PROCESS OF RULE DISCOVERY

{R is a classification rule andP0, P1 andP2 populations of classification
rules}
R := INITIAL_RULE (images) // Creation of a rule according to
spectral extremes
P0 := INITIALIZATION (R) // Random perturbation of rules
EVALUATION (P0) // Calculation of the fitness function for each rule
while TERMINATION_CRITERION(P0) = falsedo

P1 : = SELECTION_X(P0) // Selection for crossover
P1 : = CROSSOVER(P1) ∪ COPY(P0)
P2 : = SELECTION_MUT(P1) // Selection for mutation
P2 : = MUTATION (P2) ∪ COPY(P1)
EVALUATION (P2)
P0: = REPLACEMENT(P0,P2) // New generation of rules

end while
Result:R, the classification rule for a given class

As mentioned before, this algorithm must be designed to run independently
for each class. This allows for obtaining classifiers according to user requirements
without the necessity of carrying out computations for all classes with the same
level of quality. This also allows for the maintenance of previously generated clas-
sifiers, as well as for the introduction of new ones. Further,the user may define a
hierarchy of classes and specialize some classifiers while respecting newly created
sub-classes with different levels of classification quality.

3.4.2. The evaluation function

The evaluation function serves to differentiate the quality of generated rules and
guide genetic evolution. Usually, this function depends strongly on application
domain. In our work, evaluation is based on the classification obtained by the
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classifier (Irule) and the expertly given classification (Iexpert). Table 3.1 defines
the values necessary to compute the evaluation function.

Image classified by the classifierR (Irule)

No. of pixels activatingR ... non activatingR

Pixel classified by the True P rul
exp P rul

exp

expertE (Iexpert) False P rul
exp P rul

exp

Table 3.1. Characteristics of the evaluation function

In a given system, the evaluation function is computed as a balanced score
between sensitivity and specificity, two popular quality measures in remote sens-
ing:

Nfinal = αNclass + (1 − α)Nclass (3.3)

whereNclass =
P rul

exp

P rul
exp+P rul

exp

is the sensitivity andNclass =
P rul

exp

P rul
exp

+P rul
exp

is the

specificity.α is called the adjusting coefficient, which is used for certain classes
that are under- or over-represented. By default, the value of this coefficient is equal
to 0.5.

The proposed function has a number of advantages; it is independent of the
pixel processing sequence, invariant of the size of classes, and efficient for class
discovery with a highly variable number of pixels.

The evolution process converges according to some statistical criteria indi-
cating if the current classifier is near to a global optimum orif the population of
rules will not evolve anymore. The termination criterion ofthe algorithm leans on
the statistics of classifier quality evolution. In our system, we take into consider-
ation not only the evolution of quality of the best and the average classifiers, but
also the minimum acceptable quality defined by a user and a maximal number of
generations to run. If one of these criteria is satisfied, then the process is stopped.

The most difficult determination to make is whether the quality of a classifier
is not continuing to evolve. To detect stabilization of the quality measure, we have
based our heuristics on statistics regarding quality evolution of the best classifier.
For example, letQk be the quality of the best classifier obtained during the lastk
generations, andQo be the quality of the best classifier of the current generation.
The algorithm is interrupted if the following equation is satisfied:

∣

∣

∣

∣

∣

∑P

k=1
Qk

P
− Qo

∣

∣

∣

∣

∣

≤ E (3.4)

whereP represents the maximum period of quality stabilization, and E is a
maximal variation of this stabilization compared with the current quality.
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It is important to have an initial population of classifiers within the vicinity
of the solution to be found. Two algorithms have been proposed allowing for the
generation of a diversified pool of classifiers close to the expert hidden classifica-
tion rule. The first, calledGenMinMax, creates maximum intervals covering the
expert rule, and the second algorithm, calledGenSpectro, integrates the spectral
distribution density and interval partitioning [24].

3.4.3. Genetic operators

One of the most important tasks while designing a genetic algorithm is to invent
operators that will create new potential solutions. All of our operators have been
specialized on classifier representation, and they have been validated on remote
sensing images. With respect to software engineering, the genetic algorithm has
been structured into layers corresponding to genetic operations (e.g. selection,
mutation, crossover and replacement). The system is viewedas a collection of
layers with data passed from layer to layer. Layer executionfollows from one to
another, and genetic operations are invoked in the same sequence. This modular
approach makes program maintenance and future extensions much easier.

Selection of classifiers.In general, selection is the operation of allocating
reproductive opportunities to each classifier. The reproductive force of a classifier
is expressed by a fitness function that measures the relativequality of a classifier
by comparing it to other classifiers in the population. Thereare many methods
for selecting a classifier [6]. In our system, the selection operator is applied in the
following cases:

• choosing the classifier to be reproduced for crossing, or muting;
• repetition of the classifier, depending on whether it completes the ge-

netic pool after having completed the crossover;
• preservation of a classifier from the former genetic pool forthe next

generation;
• elimination of a classifier in a newly created genetic pool based on an

assigned rank.

Selection strategies are well known: the roulette wheel, ranking, elitism, ran-
dom selection, the so-called tournament, and eugenic selection. Our experiments
have shown that roulette wheel selection is most advantageous for the reproduc-
tive phase, but the tournament strategy with elitism is bestfor the generational
replacement scheme.

Crossover of classifiers.Crossover requires two classifiers, and cuts their
chromosome at some randomly chosen positions to produce twooffspring. The
two new classifiers inherit some rule conditions from each parent-classifier. A
crossover operator is used in order to exploit the qualitiesof the classifiers.

Each result of the crossover process has to be validated. Validation of the
various rule attributes (border limits violation, overpasses, etc) is carried out by a
process of interval merging, as shown in figure 3.5.
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After crossover After merging

]67;55[]36;24[]13;10[ ∨∨
]93;81[]53;48[]27;7[ ∨∨

]67;55[]53;48[]13;10[ ∨∨
]93;81[]36;24[]27;7[ ∨∨

]67;55[]53;48[]13;10[ ∨∨
]93;81[]36;7[ ∨

Figure 3.5. Interval merging after crossover operation. With a real-image, the crossover consists to
exchange the tests corresponding to given parts of the spectrum of a sample. Interval merging does not
change the mathematical interpretation of the test.

However, merging not only decreases the number of intervalsin the rules, but
also generates some information loss. In fact, in order to avoid a premature con-
vergence of rules, it is generally important to preserve forthe following generation
two distinct intervals instead of a single aggregated one. On the other hand, it is
interesting to note that the positive or negative effects ofan interval on the quality
of the rule can be related to other intervals encoded in the classification rule. By
checking the quality of the obtained rules, we finally discovered thatnot merging
is a better solution if the user is not concerned by the computing time because it
requires more iterations.

Mutation of classifiers. The mutation operator plays a dual role in the sys-
tem: it provides and maintains diversity in a population of classifiers, and it can
work as a search operator in its own right. The mutation processes a single classifi-
cation rule and it creates another rule with altered condition structure or variables.
The mutation operator may be applied on three levels: band level, interval level
and border level.

Band mutation consists of a deletion of spectral bandwidth in a chosen clas-
sification rule. Its interest is twofold; firstly, the band mutation type allows for
simplification and generalization of a rule; secondly, it allows for the elimination
of noisy bands that frequently appear in hyper spectral images. The existence of
noisy bands significantly perturbs the learning process, aswell as the process of
evolution convergence.

Interval mutation allows for a chosen band to add, eliminateor cut an interval
in two spectral ranges. In case of addition, the new rule is completed by a new
interval centered randomly with a user-defined width. The cutting of an interval is
done by random selection of a cutting point within the interval (for example, the
cutting of [10; 100] can generate two intervals:[10; 15] and [15; 100]). Mutation
such as this allows for breakage of continuous spectral ranges. And, this allows
for the definition of a spectral tube in which spectral valuesof the pixels can be
assigned to a given class.

Finally, border mutation modifies both boundaries of an interval. This muta-
tion refines the idea of targeting spectral tubes carried outby the other types of
mutation. It is worthwhile to note that the mutated rules aresystematically vali-
dated.



12 Discovering of Classification Rules from Images

In our system, mutation operators are dynamically adapted by tunning (i.e. we
test different parameters for the same training set and we elect the best choice by
looking at a testing set). Adjustment is related to the probability of each mutation
operator according to its current effectiveness.

Generational replacement.The generational replacement is an operation
that determines which of the current classifiers in the population is to be replaced
by newly evolved classifiers. According to the algorithm A1,the new generation
of classifiers is created from a population of parents (P0) and their children af-
ter the crossover and the mutation operations (P2). In our system, the following
replacement strategies are applied:

• the revolutionary strategy in which only the population of the children
completely replaces the parent population (P0),

• the steady-state strategy in which new classifiers are inserted in the new
population by replacing the worst, oldest member, or the most similar
members, or by preserving the best classifiers (elitism).

There exist other replacement strategies integrating for instance the heuris-
tics where the best individual of the previous population replaces the worst one
of the current population or the heuristics where the new individuals having a
performance higher than a certain threshold are inserted. However, both of these
strategies present the risk of having individuals remain inthe population. This is
not necessarily a problem except in the case of a weak geneticpool in which some
individuals of average performances that would profit from immunity.

3.5. From the rule creation to the evolution with XCS-R

XCS and XCS-R are learning classifier systems (LCS). LCSs arealgorithms for
symbolic learning. The main difference between LCSs and other learning tech-
niques like neural networks and genetic programming is the aptitude for collab-
orative learning. The objective is to create a chain containing a given number of
classifiers, so that the whole chain will be the complete solution of the problem.
The information will be transmitted from a link to an other one, using messages
to interpret.

XCS evolves a set of rules, the so-calledpopulation of classifiers. This method
is presented for comparison with ICU. Rules are evolved by the means of a genetic
algorithm. A classifier usually consists of a condition and an action part. The con-
dition part specifies when the classifier is applicable and the action part specifies
which action, or classification, to execute. In contrast to the original LCSs, the
fitness in the XCS classifier system, introduced by Wilson [33], is based on the
accuracyof reward predictions rather than on the reward predictionsthemselves.
Thus, XCS is meant to evolve not only a representation of an optimal behavioral
strategy, or classification, but rather to evolve a representation of a complete pay-
off map of the problem. That is, XCS is designed to evolve a representation of the
expected payoff in each possible situation-action combination.
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Since our system is confronted with real-valued data in thisstudy, we apply
the real-valued extension of XCS (XCS-R) introduced in [36]. Recently, several
studies have been reported that show that XCS performs comparably well to sev-
eral other typical classification algorithms in many standard data mining problems
[5, 4, 13].

This section provides a short introduction to the XCS classifier system. For
a more detailed introduction to XCS and XCS-R the interestedreader is referred
to the original paper [33], the real-valued extension [36] and the algorithmic de-
scription [9].

3.5.1. Overview of the algorithm

As mentioned, XCS evolves a population [P] of rules, or classifiers. Each classifier
in XCS consists of five main components:

(1) The condition part specifies the subspace of the input space in which the
classifier is applicable, or matches. In our real valued problem, a con-
dition specifies a conjunction of intervals, one for each attribute. If the
current problem instance lies within all specified intervals, the classifier
matches.

(2) The action part specifies the advocated action, or classification.
(3) The payoff prediction estimates the average pay-off encountered after

executing action A in the situations in which the condition part matches.
(4) The prediction error estimates the average deviation, or error, of the

payoff prediction.
(5) The fitness reflects the scaled average relative accuracyof the classifier

with respect to other overlapping classifiers.

Learning usually starts with an empty population. Given current input, the
set of all classifiers in [P] whose conditions match the inputis called the match
set [M]. If some action is not represented in [M], a covering mechanism is ap-
plied. Covering creates classifiers that match the current input and specify the not
covered actions2. Given a match set, XCS can estimate the payoff for each possi-
ble action forming a prediction array P(A). Essentially, P(A) reflects the fitness-
weighted average of all reward prediction estimates of the classifiers in [M] that
advocate classification A. The payoff predictions determine the appropriate clas-
sification. During learning, XCS chooses actions randomly.During testing, the
actionamax with the highest value P(amax) is chosen.

2ICU benefits from an initialization creating directly good initial individuals by looking at the
whole training set. However, XCS has this covering mechanism that could create good individual but
by looking only at one sample of data. It is difficult to state which technique is better, because this
strongly depends on the implicit patterns contained in the data. The difference of the accuracies of
the two algorithms observed in the case study is caused by thepreprocessing of the data (if applied)
and the initialization phase. More theoretical studies arerequired to predict, in the general case, which
method is more suitable.
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3.5.2. Reinforcement and discovery components

XCS iteratively updates its population of classifiers with respect to the succes-
sive problem instances. After the classification is selected by the means of the
prediction array and applied to the problem, scalar feedback is received. In a clas-
sification problem, classifier parameters are updated with respect to the immediate
feedback in the current action set [A], which comprises all classifiers in [M] that
advocate the chosen classification A. After rule evaluationand possible genetic
algorithm (GA) invocation, the next iteration starts.

The aforementioned covering mechanism ensures that all actions in a partic-
ular problem instance are represented by at least one classifier. Each attribute of
the new classifier condition is initialized using parametercover-rand that speci-
fies the maximal interval the condition comprises in an attribute. XCS applies a
GA for rule evolution. A GA is invoked if the average time since the last GA
application upon the classifiers in [A] exceeds a threshold.The GA selects two
parental classifiers using set-size relative tournament selection [8]. Two offspring
are generated reproducing the parents and applying crossover (uniform crossover)
and mutation. Parents stay in the population competing withtheir offspring. In the
insertion process, subsumption deletion may be applied [34] to stress generaliza-
tion. Due to the possible strong effects of action-set subsumption, we only apply
GA subsumption, which searches for an accurate, more general classifier that may
subsume the offspring. If such a more general classifier is found, the offspring is
discarded and the numerosity [34] of the subsumer is increased. The population of
classifiers [P] is of fixed size N. Excess classifiers are deleted from [P] with prob-
ability proportional to an estimate of the size of the actionsets that the classifiers
occur in. If the classifier is sufficiently experienced and its fitness F is significantly
lower than the average fitness of classifiers in [P], its deletion probability is further
increased.

3.5.3. Rules selection

As in ICU, the same pixel may activate several rules coding for different classes.
This behavior can be constrained for solving problems asone-to-oneclassification
(one pixel always corresponds to one class, contrary to theone-to-Nclassification,
in which one pixel may correspond to several classes). Two methods (MaxConfi-
dentandScoredConfident) were tested, asking the pool to give a unique class for
each pixel:

(1) In the first one, only the rules which have a correct self-confidence are
considered, in other terms, payoff prediction should be greater than a
given threshold (fixed in our experiments to the half of the maximum
value of payoff prediction for the current problem). Then the most fre-
quent class obtained from rules which had matched the pixel is returned.



Case studies 15

(2) In the second one, all the rules which have matched the pixel are con-
sidered. For a classc, a score is computed as follows for each ruler:

Sr =

∑

Pr ∗ Fr
∑

Fr

(3.5)

wherePr is the prediction payoff of the ruler andFr its fitness.
The action of the rule with the bestSr is returned.

These two methods have been experimented for different subsets of CASI
data and for a pre-treated expertise set as follows: if more than one class was
affected to the same pixel, only the dominant class was retained according to the
percentage of its concentration given by the expert. Here, contextual classification
(i.e. looking at the neighbor pixels) can help to overcome this kind of ambiguity.
Many cases of ambiguities occur when two classes have the same spectra whereas
they can be discriminated by the context (for instance, water and shadows have
relatively low reflectance and they can be distinguished by looking at the classes
located around).

3.6. Case studies

3.6.1. Consideration with the data

The data available for this study was acquired during a field campaign at the end
of September 2002, for the European project TIDE (Tidal Inlets Dynamics and
Environment, [3]). During this project, data was obtained from satellite or aircraft,
at different scales and resolutions, providing amulti-level viewof the ground [29].
A multi-level remote sensing is a useful technique to monitor large areas: a global
view of the area can be identified by the satellite image, while the checking of a
particular area or a classification need aerial imagery. Theexpertise used in the
following supervised classification are based on a costly mean, ground truthing
(the characterization of all points are made by hand by a human expert), and on
expert validation provided by the examination of differentlevels of the data. Due
to the existence of such different sources, the expert validation of points is not the
easiest way but it is relatively safe and relevant. Some assumptions were made
about the data [31]:

• the reference data in the learning base are truly representative of the
sought classes;

• the reference data and the expert data are perfectly synchronized by geo-
referencing;

• there is no error in the reference data (incorrect or missingclass assign-
ments, change in the vegetation boundaries between the timeof imaging
and the time of field verification, positional errors, ...).

Considering the expertise, two issues have to be addressed.The first, the com-
plexity of the analyzed environment, particularly the effect of partial volume (data
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includespixelsof non pure classes), requires that the expert selects several classes
for one point (multi-labeling). A typical supervised method handles only one class
attribute. Thus, in the case of multi-labeling, the dominant class is kept or the point
is dropped. The second mainly for cost reasons, the human expert can only label
very few points. The identification of the boundary of each class and the con-
struction of convex hulls are mandatory to include more and interior pixels in the
expertise. The points can represent exactly the class, a part of the class, or some-
times a corner of a different kind of vegetation cross a hull supposed to be a whole
class. Extra knowledge may be needed to select the correct points.

In this chapter, a remote sensing image of San Felice (Lagoonof Venice) has
been chosen (figure 3.6). This image contains multispectraldata (CASI 15 bands),
with 142x99 pixels, 16 bits per pixel and 1.3m terrain resolution [24]. The case
study considers a typical problem of classification for rural zones, with only five
requested classes but including a high percentage of mixed pixels. Learning was
carried out on 50% of the 1540 points, and then validation wasperformed on the
whole data.

Figure 3.6. Reference and expert data (CASI, San Felice)

3.6.2. ICU classification

The image and statistics presented in the figure 3.7 summarize our experiments.
The parameters (described in the section 3.4.3) for ICU are as follows:Pcross

= 0.7,Pmut = 0.15,Pmut,band = 0.3,Pmut,interval = 0.2,Pmut,border = 0.4, 300
individuals, 2000 to 5000 generations and selection by rankfor the crossover and
the mutation operators.

It should be mentioned that validation points do not concernany water. Water
can be classified quickly using standard statistical tools,even with unsupervised
ones, and are beyond the interest of the experts. ICU classifies these pixels in the
most approximate class (SPA1), but quality of these areas are not relevant (at the
south and the right border). SPA2 is a pure class of Spartima Maritima and SPA1
contains Spartima in a non-dominant way. The only point where ICU disagrees
with the expertise is the small spot at the right lower corner(SPA1 instead of
SPA2, see the figure 3.7). The very narrow resemblance of the spectra of these
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Classification by the expert  
SAR2 LISR SPA2 SPA1 LIM1 Qppa 

SAR2 222 0 0 0 5 98% 
LISR 59 149 0 0 21 65% 
SPA2 0 0 382 162 8 69% 
SPA1 0 0 0 28 0 100% 
LIM1 0 0 3 33 468 93% 

B
y 

th
e 

cl
as

si
fie

rs
 

Qsens 79% 100% 99% 13% 93%  
 

Figure 3.7. Classified image and confusion matrix for ICU

two classes explains that. Classification is quite globallycorrect (κ-index of 0.81,
average accuracy of 81.1%). The figure 3.8 shows the map of overlaps, designed
to test overlapping rules. The whiter a pixel, the more rulesare activated. If no
rule can be used, the pixel is shown in red (in fact in the color"0", depending
on your printout). The map of overlaps is automatically generated, it shows pixel
classes and the degree of mixing, without any external knowledge. The image
below demonstrates, for instance, that no knowledge about water evolved.

Number of matched
rules for a pixel:

0 1 2 3 4 5

Figure 3.8. Map of the overlapping zones, produced only by ICU

3.6.3. XCS classification

The classification with XCS shows quite good results. The image and statistics
presented in the figure 3.9 illustrate our experiments.

The same remark should be made about the color of what one believes being
a water class, which actually is not relevant. ICU and XCS findthe same classes
for the same points, including the border of the salt marsh, which contain a lot of
mixels (a composition of several species on the same pixel).XCS has spent many
classifiers to separate SPA1 and SPA2 correctly. Nearly one classifier was used to
describe each pixel. Nevertheless, a better global accuracy was obtained (κ-index
of 0.88, average accuracy of 87.7%). XCS is then better than ICU with a less
accurate initialization procedure, because the pattern ofthis data could be better
learned with local initializations (covering operator) than using a global initializa-
tion (GenMinMaxor GenSpectroof ICU). But global initialization is more fast.



18 Discovering of Classification Rules from Images

Classification by the expert  
SAR2 LISR SPA2 SPA1 LIM1 Q ppa 

SAR2 266 12 0 0 3 95% 
LISR 11 133 0 0 2 91% 
SPA2 0 0 353 83 1 81% 
SPA1 0 0 27 106 3 78% 
LIM1 4 4 5 34 493 91% 
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Q sens 95% 89% 92% 48% 98%  
 

Figure 3.9. Classified image and confusion matrix for XCS

The typical learning time with ICU on this dataset is about 2-3 minutes, against
4-7 minutes on a 3 GHz CPU.

3.6.4. Comparison between ICU and statistical classifiers

To attest that performance of ICU is comparable to other algorithms known to be
really efficient in this domain [7, 16, 21, 22], this algorithm was tested on two
data sets. These data correspond to two images of San Felice (Lagoon of Venice),
with different spectral and spatial resolutions, namely CASI sensor (date: 2002, 15
bands, 754x293 pixels, resolution 1.3m2, 6 classes) and the hyperspectral MIVIS
sensor (date: 2003, 20 bands, 396x170 pixels, resolution 2.6 m2, 7 classes).

The results for the testing set (50% of all of the data) are presented in the
table 3.2. Accuracy is the mean of the diagonal of the confusion matrix and the
κ-index characterizes a correctly distributed confusion matrix (1 on the diagonal,
0 everywhere else).

Accuracy for CASI (κ-index) Accuracy for MIVIS (κ-index)

ICU 0.990 (0.99) 0.884 (0.88)
SVM 0.974 (0.97) 0.978 (0.98)
Neural network 0.893 (0.89) 0.878 (0.88)

Table 3.2. Results obtained for the two images.

For ICU, the parameters was the same that those described in the section 3.6.2.
For the algorithm based on neural networks, a learning rate of 0.1, 100000 itera-
tions, 1 hidden layer of 7 to 15 neurons, an incremental method for the learning,
and a symmetrical sigmoid activation function were chosen.The exit layers repre-
sent the expert continuous values and there are as many exit neurons as there are
classes to be learned. The free library inC, named the Fast Artificial Neural Net-
work Library (FANN, [1]), was used. The chosen neural network topology was
simple but efficient. For the algorithm based on Support Vector Machine (SVM),
the RBF kernel was used; and the parametersC andγ were discovered for each
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data set using free software and a step by step optimization algorithm in Python
presented on the site of the LIBSVM [10].

ICU has shown better performance than SVM and NN for the CASI image
and better than NN for the MIVIS image. The image of the MIVIS sensor was
most difficult to analyze for several reasons: some additional bands; less pixels
in the image, thus less samples in the training set (each timethe whole training
set consisted of less than 2% of the image); the first bands of MIVIS are slightly
more disturbed than for CASI; and finally some classes of vegetation were no
longer present on the saltmarsh in 2004, which caused a drop in the quality of
the training data. When the values in the data set are a kind ofcomposition of
several pure classes (mixels) a system based on disjunctions like ICU proves to be
more useful. Moreover, this kind of classifier would make it possible to expose the
contents of the rules to a human expert contrary, for example, to a neural network
(often treated as ablack box).

To illustrate the simplicity of the formalism of the rules discovered by our
algorithm, an example of a rule which classifies the instances of one of the class
follows:

(435 ≤ B0 ≤ 1647)∧. . .∧((365 ≤ B74 ≤ 4023)∨(15643 ≤ B74 ≤ 48409))
∧ . . . ∧ (668 ≤ B79 ≤ 4413) ⇒ [CLASS 4]

whereBi is the reflectance value for the bandi of the considered pixel. The
typical learning time with NN on this dataset is about 1 minute, against 10-15
minutes for the step by step optimization of SVM on a 3 GHz CPU.

3.6.5. Summary of experiments

The three case studies have demonstrated the high capacity of the evolution-based
classifiers to interpret and classify heterogeneous and complex images (e.g. high
dimension in(X, Y, S), large number of bands and noisy data that generate a
computational complexity ofO(n3)). The quality of classification has been shown
very high even in cases of high number of noisy bands and mixedpixels. It must be
noted that the quality of learning is highly related to the quality of the classified
image used for rule discovery. The discovered classification rules have been in
general simple and easy to interpret by remote sensing experts. They are also
mutually exclusive and maximally specific. Nevertheless, the learning time was
relatively long due to the large image size and the chosen parameters. Classified
images by the discovered rules have shown that the evolution-based classifier is
able to faithfully reproduce the human expertise and algorithms already in use in
this domain.

3.7. Conclusion and perspectives

This chapter has detailed the evolution-based classifier systems applied to remote
sensing images. The systems have been able to discover a set of « if . . . then. . .

class» classification rules using the fitness function based on image classification
quality. These rules, which have been proven robust and simple to understand
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by the user. The accuracy of the expert has been improved and the rules have
been demonstrated sufficiently generic for reusing them on other parts of satellite
images. Hence, the classifier systems can be considered of great interest when
compared to traditional methods of classification.

Taking into consideration image complexity and noisy data,the results of
our experiments are very encouraging. Case studies have demonstrated that the
obtained classifiers are able to reproduce faithfully the terrain reality. The rules
are well adapted to recognize large objects on the image (e.g. sport lands), as well
as the smaller ones (e.g. trees, shadows, edges of the buildings). The redundant
or noisy bands have been successfully identified by the classifiers. The formalism
of rule representation has allowed the modelling of a spectral tube adapted to the
granularity of spectral reflectance.

The potential of evolution-based classifiers in remote sensing image classifi-
cation begins to be explored. Further investigation of the classifiers efficiency are
necessary. Currently, we are starting to work on a more powerful representation of
rules including spatial knowledge, temporal relations, and hierarchical representa-
tion of objects. Contextual classification can help to overcome some ambiguities,
as stated in the last section before the case studies, but this technique requires to
know in which order the algorithm will classify the neighborpixels. Future re-
search would be followed in this direction. We are also trying to optimize system
performance, in particular the implementation of the genetic process on a parallel
machine and the tuning of its initial parameters. The classifier system developed
by this research work, called ICU, and other classification software related to re-
mote sensing are currently available on our web site http://lsiit.u-strasbg.fr/afd.
The XCS algorithm can be downloaded from the IlliGAL web site, http://www-
illigal.ge.uiuc.edu.
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