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 In this article, an approach for creating image classification rules 

using evolutionary operators is described. Classification rules, discovered by 
application of a genetic algorithm on remote sensing data, are able to identify 
spectral classes with comparable accuracy to that of a human expert. Genetic 
operators and the fitness function are detailed, and then validated for 
hyperspectral images (more than 80 spectral bands). Particular attention is 
given to mutation operators and their efficiency in the creation of robust 
classification rules. In our case studies, the hyperspectral images contain 
voluminous, complex and frequently noisy data. The experiments have been 
carried out on remote sensing images covering zones of Lagoon of Venice and 
the city of Strasburg, France. It has been shown that the evolution-based 
process can not only detect and eliminate noisy spectral bands in remote 
sensing images but also produce comprehensive and simple rules which can be 
also applied to other images. ��������� �
���

: Remote sensing image, classification rules, high resolution image, 
hyperspectral image, supervised learning, evolutionary learning, genetic 
algorithm. 

�� ,QWURGXFWLRQ�
The design of robust and efficient image classification algorithms is one of the 

most important issues addressed by remote sensing image users. For many years, a 
great deal of effort has been devoted to generating new classification algorithms and 
to refine methods used to classify statistical data sets (Bock, Diday, 1999). At the 
time of this writing, relatively few workers in the machine learning community have 
considered how classification rules might be genetically discovered from raw and 
expertly classified images. In this paper, a new data-driven approach is proposed in 
order to discover classification rules using the paradigm of genetic evolution. 

The unique source of information is a remote sensing image and its corresponding 
classification furnished by an expert. The images have been registered by various 
satellites (e.g. SPOT, LANDSAT, DIAS, ROSIS) that use different cameras having 
various spectral and spatial resolutions (Weber, 1995). These types of remote sensing 
images generally contain huge volumes of data, for instance an image of DAIS 
contains 79 bands of each one 2.8 Mbytes. And, sometimes they are very noisy due to 
coarse spatial resolution or unfavorable atmospheric conditions at the time the images 
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are acquired. In addition, data may be also erroneous due to inexperienced operators 
of the measurement devices. 

The aim of this research is to detail an evolutionary classification method applied 
to remote sensing images. More about evolutionary classifiers can be found in 
(DeJong, 1988) and (Ross, Gualtieri et al., 2002). As stated, the approach to discover 
classifiers is data-driven because the formulated classification rules are generated 
from data and are able to adapt themselves according to this available data, 
environment, and the evolution of classes. In remote sensing, the initial population of 
classification rules is randomly created from raw images and given classes, and then 
evolved by a genetic algorithm until the acceptable classification accuracy is reached. 

In remote sensing literature, several classification approaches are presented, 
namely: 

− pixel-by-pixel, each image pixel is analyzed independently of the others 
according to its spectral characteristic (Fjørtoft, Marthon et al., 1996), 

− zone-by-zone, before classification, the pixels are aggregated into zones, the 
algorithms detect the borders of the zones, delimit them by their texture, or 
their repetitive patterns (Kurita, Otsu, 1993), 

− by object, this is the highest level of recognition, the algorithms classify 
semantic objects, detect their forms, geometrical properties, spatio-temporal 
relations using domain knowledge (Korczak, Louis, 1999). 

Our approach uses spectral reflectances; therefore, discovered classification rules 
are only able to find spectral classes rather than semantic ones. This spectral 
component of class description is essential to well recognize thematic classes. The 
approach has been validated using our software environment, called ,�6HH�<RX (ICU). 
In this software, the object representation is not too sophisticated but it offers a high 
degree of freedom in description of symbolic expressions of rules and definition of 
genetic operators. The goal was to evaluate the capacity of the genetic approach to 
handle problems of over-generalization and over-fit in highly noisy and complex data. 
The ICU is a genetic-based classifier, where we have adapted and extended ideas  of 
learning classifier systems, such as XCS (DeJong, 1988; Wilson, 1999), the s-
classifiers, and “Fuzzy To Classify System” (Rendon, 1997). We have also been 
inspired by the works of Riolo (Riolo, 1988) on gratification and penalization, and of 
Wilson (Wilson, 1999) on the exploration of the search space. 

The paper is structured as follows. The basic concepts of image classification rules 
are introduced in Section 2. Section 3 details the discovery process of the 
classification rules. In this Section, the behavior of genetic algorithm functions is 
explained. Finally, two case studies on real remote sensing data are presented in 
Section 4. 

�� &RQFHSW� RI� FODVVLILFDWLRQ� UXOH� H[WUDFWHG� IURP� UHPRWH� VHQVLQJ�
LPDJHV�

In general, classification rules are symbolic expressions and describe conditions to 
be held and actions to be taken if the conditions are satisfied. It must be underlined 
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that in our approach the rules are discovered by an evolutionary process and are not  
given a priori by a domain expert. 

From a functional point of view, a rule represents a piece of knowledge about a 
class by a conditional expression, such as LI� �FRQGLWLRQV!� WKHQ� �FODVV!. The 
“FRQGLWLRQV” part described an entry information in the system such as value, color, 
form, shape, etc, corresponding to conditions that must be fulfilled in order to activate 
this rule. The “FODVV” part defines the class of the instance currently treated by the rule 
when the appropriate conditions were satisfied. We assert that the evolved rules must 
be rapidly evaluated and easy to interpret by any user. As a result, condition 
representation using the concept of an interval could be fully adequate for remote 
sensing image classification. In terms of machine learning, the rules have to be 
maximally discriminant generalizations, meaning that they have to cover the 
maximum pixels belonging to a given class and the minimum pixels belonging to 
another classes. 

Before rule specification, recall that a pixel is encoded as a spectral vector, 
describing values of reflectance for the Q bands of the remote sensing image, i.e. a 
pixel can be considered as a point in a 5 �  space : 

 
� �SL[HO!�� �>E � �E � �E � ����E � @� (1) 
�
In our system, the condition for any rule is built on the concept of spectral 

intervals defining a given band, corresponding to a given class. Such intervals are a 
pair of integer numbers, between 0 and the maximum possible value for a pixel of a 
given band (i.e. 65536 for pixels defined on 16 bits). This solution allows to partition 
the space of the spectral values in two ranges: the first containing the pixel values 
which corresponds to a given class, and the second containing the remainder. 

To precisely specify the class definition, a set of intervals is defined for each band 
of the remote sensing image. Taking into consideration all bands, the condition part is 
defined as a set of hyper-rectangles in a 5 �  space : 
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where MLm  and MLM �are, respectively, the minimal and maximum reflectance values 

allowed for a pixel belonging to a class & for the band L. N is a parameter which 

defines the maximum number of disjunctions allowed.�
�
 These intervals are not necessarily disjunctive. By experiments, we have found 

that if we allow the genetic algorithm to create non-disjunctive intervals, instead of 
merging them, the results of genetic operators are more interesting. We have also 
noticed that merging intervals significantly diminishes the number of intervals, and in 
the same time, reduces the possibilities to create more efficient rules. To illustrates 
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the concept of interval merging, (�  � >���� ���@� ∨ � >����� ���@� ∨ � >���� ���@ 
corresponds after merge operation to (� �>�������@� 

To satisfy a rule, a pixel has to match at least one spectral interval for each band. 
Logically speaking, to associate a pixel to a class, its values have to satisfy the 
conjunction of disjunctions of intervals that define a condition part of the 
classification rule. 

This representation of the rule has been chosen mainly because of its simplicity, 
compactness and uniform encoding of spectral constraints. During experimentation, 
this representation has also demonstrated rapid execution of genetic operators and 
efficient computing. Of course, one may specify more complex structures using 
spatial properties of the pixel, with respect to the pixel neighborhood. Also, one may 
include features resulting from thematic indices or mathematical operators applied to 
pixel environment. These semantically extensions are interesting, however they not 
only require more sophisticated genetic operators, but also more powerful computers 
to perform the calculation in an acceptable amount of time. 

�� )URP�WKH�UXOH�FUHDWLRQ�WR�WKH�HYROXWLRQ�
���� *HQHWLF�DOJRULWKP�

In order to efficiently develop the classification rules, a genetic algorithm 
initializes interval values according to spectral limits of the classes designated by an 
expert, for valid zones of the remote sensing image. Initial classification rules are 
created based on the extreme maximum and minimum values for defined spectral 
intervals of each class. It should be noted that by this initialization, rule searching is 
considerably reduced, and initial intervals are very close to the final solution. More 
about initialization algorithms can be found in (Kallel, Schoenauer, 1997). During the 
process of evolution, the initial spectral limits are slightly perturbed by adding a 
random value to lower and upper spectral limits. Hence, the initial population of 
classification rules is quite diversified. 

A Michigan-like approach is used to discover independently a classification rule 
for each class. A major reason for choosing this approach is the efficiency of 
computations; that is, the process of rule discovery is not perturbed by other rules. 

 
The quality of classification rules is based on a comparison of these results with 

the image classified by an expert. If pixels covered by the rule perfectly overlap those 
indicated by an expert, then the system assigns the highest quality value to the rule; 
otherwise, in the case of some mismatching, the quality factor is reduced (between 0 
and 1). An associated fitness function will be detailed in the next section. During the 
evolution process, the rules are selected according to the quality for a given class. It 
should be noted that it is also possible to define global system quality based on rule 
classification qualities. The process of rule evolution is defined in the algorithm 
below. 
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��� ���! 
" #�$�%'&)(
Process of rule discovery. 

R is a classification rule and P, P’ and P’’ populations of classification rules. 
R: = INITIAL_RULE(images) // Creation of rule according to spectral extremes 
P: = INITIALIZATION(R)  // Random perturbation of rules 
EVALUATION(P)   // Calculation of the fitness function for each rule 
do while TERMINATION_CRITERION(P) = false 

P’ : = SELECTION_X(P)   // Selection for crossover 
P’ : = CROSSOVER(P’) U COPY(P) 
P’’ : = SELECTION_MUT(P’)  // Selection for mutation 
P’’ : = MUTATION(P’’) U COPY(P’) 
EVALUATION(P’’) 
P: = REPLACEMENT(P,P’’)   // New generation of rules 

end_while 
5HVXOW� A print of the classification rule R for a given class, statistics and quality 
measures for the discovered rule. 

 
As mentioned before, this algorithm must be designed to run independently for 

each class. This allows for obtaining rules according to user requirements without the 
necessity of carrying out computations for all classes with the same level of quality. 
This also allows to preserve the previously generated rules, as well as to introduce of 
new ones. Further, the user may define a hierarchy of classes and specialize some 
rules while respecting newly created sub-classes with different levels of classification 
quality. 

���� 7KH�HYDOXDWLRQ�IXQFWLRQ�
The evaluation function serves to differentiate the quality of generated rules and 

guide genetic evolution. Usually, this function depends strongly on application 
domain. In our work, we define a pixel that the rule classifies as being in the class 
when the expert classifies the pixel as in the class as a true positive. Conversely, we 
define a pixel that the rule classifies as being not in the class when the expert 
classifies the pixel as not in the class as a true negative. Other pixels are said to be 
correctly classified. 

We normally use as a quality measure the proportion of pixels that are correctly 
classified by the rule. In some cases, when classes are under- or over-represented, we 
care more about one misclassification than another. In these cases, we use * +* , SS ).1(. αα −+ as a quality measure, where - .S is the proportion of true positive 

pixel classifications by the rule (called VHQVLWLYLW\), / 0S is the corresponding proportion 
of true negatives (called VSHFLILFLW\), andα is a parameter that lets us adjust the 
relative weight given to true positives and false negatives. By default the value of the 
coefficient α  is fixed to ½. 

The proposed function shows a number of advantages; it is independent of the 
pixel processing sequence, invariant of the size of classes, and efficient for class 
discovery with a highly variable number of pixels. 
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The evolution process converges according to some statistical criteria indicating if 

the current rule is near to a global optimum or if the population of rules will not 
evolve anymore. The termination criterion of the algorithm leans on the statistics of 
rule quality evolution. In our system, we take into consideration not only the 
evolution of quality of the best discovered rule, but also the minimum acceptable 
quality defined by a user, the process stability measure and a maximal number of 
generations to run. If one of these criteria is satisfied, then the process is stopped. 

The most difficult question is whether the quality of a rule is not continuing to 
evolve. To detect stabilization of the quality evolution, instead of taking into account 
the best rule generated recently we have based our heuristics on statistics regarding 
quality evolution of the best discovered rules in a time. For example, let 4 1  be the 
quality of the best rule obtained during the last N generation, and 4 2  be the quality of 
the best rule of the current generation. Formally, the algorithm is stopped if the 
following equation is satisfied: 

 

 (43
4

3
4 4

≤−
∑

= 01  (3) 

 
where 3 represents the maximum period of quality stabilization, and ( is a maximal 
variation of this stabilization compared with the current quality. 

 
It is important to have an initial population of rules within the vicinity of the 

solution to be found. We have proposed two algorithms allowing for the generation of 
a diversified pool of rules close to the expert hidden classification rule. The first, 
called MinMax, creates maximum intervals covering all the pixels belonging to a 
given class, and the second algorithm, called Spectro, integrates the spectral 
distribution density and interval partitioning. 

 
With respect to software engineering, the genetic algorithm has been structured 

into layers corresponding to consecutive genetic operations (e.g. selection, mutation, 
crossover and replacement). This modular approach makes the program maintenance 
and future extensions much easier. 

���� *HQHWLF�RSHUDWRUV�
One of the most important tasks while designing a genetic algorithm is to invent 

operators that will create new potential solutions. All of our operators have been 
adapted to the rule representation, and they have been validated on remote sensing 
images. 
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6HOHFWLRQ� RI� FODVVLILFDWLRQ� UXOHV�� In general, selection is the operation of allocating 
reproductive opportunities to each rule. The reproductive force of a rule is expressed 
by a fitness function that measures relative quality of a rule by comparing it to other 
rules in the population. There are many methods for selecting a rule (Blickle, Thiele, 
1995). In our system, the selection operator is applied in the following cases: 

− choosing the rule to be reproduced for crossing, or muting; 
− repetition of the rule, depending on whether it completes the genetic pool 

after having completed the crossover; 
− preservation of a rule from the former genetic pool for the next generation; 
− elimination of a rule in a newly created genetic pool based on an assigned 

rank. 
Selection methods are well known: the roulette wheel, ranking, elitism, random 

selection, the so-called tournament, and eugenic selection. Our experiments have 
shown that roulette wheel selection is most advantageous for the reproductive phase, 
but the tournament strategy with elitism is best for the generational replacement 
scheme. 

&URVVRYHU� RI� UXOHV�� Crossover requires two rules, and cuts their chromosomes at 
some randomly chosen positions to produce two offspring. The two new rules inherit 
some rule conditions from each parent rules. A crossover operator is used in order to 
exploit the qualities of already generated classifiers. Each result of the crossover 
process has to be validated. Consistency of the various rule attributes (border limits 
violation, over-passing, etc) is carried out respecting the intervals boundaries. 
However, merging not only decreases the number of intervals in the rules, but also 
generates some information loss. In fact, in order to avoid a premature convergence of 
rules, it is generally important to preserve for the following generation two distinct 
intervals instead of a single aggregated one. On the other hand, it is also interesting to 
note that the positive or negative effects of an interval on the quality of the rule can be 
related to other intervals encoded in the classification rule.�

0XWDWLRQ�RI�UXOHV��The mutation operator plays a dual role in the system: it provides 
and maintains diversity in a population of rules, and it can work as a search operator 
in its own right. The mutation processes a single classification rule and it creates 
another rule with altered condition structure or variables. The mutation operator for 
several may be applied on three levels: band level, interval level and border level. 
Figure 1 shows the different variants of mutation as applied to remote sensing images.�

%DQG� PXWDWLRQ consists of a deletion of spectral bandwidth in a chosen 
classification rule. Its interest is twofold; firstly, the EDQG�PXWDWLRQ allows to simplify 
and generalize a rule; secondly, it allows to eliminate of noisy bands that frequently 
appear in hyper spectral images. The existence of noisy bands significantly perturbs 
the learning process, as well as the process of evolution convergence. 

,QWHUYDO�PXWDWLRQ allows for a chosen band to add, eliminate or cut an interval in 
two spectral ranges. In case of addition, the new rule is completed by a new interval 
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centered randomly with a user-defined spectral width. The cutting of an interval is 
done by random selection of a cutting point within the interval (for example, the 
cutting of >������@ can generate two intervals: >�����@ and >������@). Interval 
mutation such as this allows splitting of continuous spectral ranges. And, this allows 
for the definition of a spectral tube in which spectral values of the pixels belong to a 
given class. 
 
 

 576 8 9�:)9 Mutation operators 

 
Finally, ERUGHU� PXWDWLRQ modifies both boundaries of an interval. This mutation 

refines the idea of targeting spectral tubes carried out by the other types of mutation. 
It is worthwhile to note that the mutated rules are systematically validated. 

In our system, mutation operators are dynamically adapted. Adjustment is related 
to the probability of each mutation operator according to its current efficiency. 
Another schemes of mutation can be easily implemented, for instance self-adaptive 
mutations proposed by (Anglano et al., 1998; Thomsen, Krink, 2002). 

*HQHUDWLRQDO� UHSODFHPHQW�� The generational replacement is an operation that 
determines which of the classifiers in the current population is to be replaced by 
newly discovered children. According to Algorithm 1, the new generation of rules is 
created from a population of parents (P) and their children after the crossover and the 
mutation operations (P’’). In our system, the following replacement strategies are 
applied:�

− the revolutionary strategy in which only the population of the children 
completely replaces the parent population (P), 

− the steady-state strategy in which new children are inserted in the new 
population by replacing the worst, or the oldest rule, or the most similar 
rules, or by preserving the best rules (elitism). 

There exist other replacement strategies integrating, for instance, the strategy 
where the best rule of the previous population replaces the worst one of the current 
population or the strategy where the new classifiers having a performance higher than 
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a certain threshold are inserted. However, both these strategies present the risk of 
having classifiers remain in the population, which is not necessarily a problem except 
in the case of a weak genetic pool in which some classifiers of average performances 
that would profit from immunity. 

 

�� &DVH�VWXGLHV�DQG�H[SHULPHQWV�
In this paper, two case studies involving the remote sensing images of Strasbourg 

and San Felice (Lagoon of Venice) have been chosen. These cases contain 
hyperspectral data (DAIS 79 bands and ROSIS 80 bands, respectively), with 16 bits 
per pixel and 3m terrain resolution (Wooding, 2001; Quirin, 2002). The first case 
study considers a typical problem of classification for urban zones including a high 
percentage of mixed pixels. The second case demonstrates the performance of rules 
on very noisy images with closed spectral classes (mostly vegetation classes). 
Learning was carried out on the lower half of the image (932*184 pixels), and then 
validation was performed on the whole image (932*368 pixels).�

To well understand the formalism of rule representation, let % ;  be the reflectance 
value for the band L of the considered pixel. For instance, the conditional portion of 
the rule that classifies the instances of a /LPRQLXP�1DUERQHQVH class is given below: 
 

 �� 6553500 ≤≤  

∧  �� 19281461 ≤≤  
∧  ...  

∧  )6553550( ≤≤ %  

∧  ...  

∧  ))39307126541()189512522(( ≤≤∨≤≤ %%  
∧  ...  

∧  )210779364( ≤≤ %  

 
 

It is easy to notice that the band B0 and B5 are too noisy (range maximum), and 
they can be eliminated from the condition. The rules simplification may be also 
implemented indirectly in the rule evaluation function, promoting the rule simplicity. 
It should be also noted that after preliminary tests, this method generated many over-
generalized rules with relatively weaker performance than that obtained by the simple 
deletion. 

In the following part, the main results of evolutionary data mining are described. 
Each case study is illustrated by a classified image using the discovered rules, 
discussions and performance measures. 
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,PDJH�RI�6WUDVERXUJ��6WDGLXP�9DXEDQ��K\SHUVSHFWUDO�LPDJH�����EDQGV��
 

 <>= ?�@�A!@
 Classified image 

 BDC�E�F GIH @
 Parameters of the GA 

3DUDPHWHU� 9DOXH�
Population 1500 rules 
Generations 250 
Stabilization length 20 
Stabilization error 10-4 
Crossover rate 80% 
Mutation rate 5% 
Rate of eugenic sel. 1% 
CPU time (P4 2.5GHz) 16 h 
Learned classes 11 
Performance 86,06 % 
 

&RPPHQWV� This complex remote sensing image contains more than 50% noisy 
bands. Moreover, :DWHU data is represented by many small, corrugated lines (signal 
has been scrambled by atmospheric conditions) so :DWHU and 6KDGRZ spectral signals 
are very similar. Therefore, a small spot of :DWHU appears in the middle of the city, 
instead of 6KDGRZ. The average quality of the best rule for each class is about 86%, 
which is relatively good performance. 

,PDJH�RI�9HQLFH��/DJRRQ�6DQ�)HOLFH��PXOWLVSHFWUDO�LPDJH����EDQGV�
 

  <>= ?�@�J!@
 Expert image 

 <>= ?�@�K�@
 Classified image 

 BDC�E�F G AL@
 Parameters of the GA 

3DUDPHWHU� 9DOXH�
Population 500 rules 
Generations 500 
Stabilization length 10 
Stabilization error 10-4 
Crossover rate 75% 
Mutation rate 15% 
Rate of eugenic sel. 1% 
CPU time  (P4 2.5GHz) 2 h 
Learned classes 5 
Performance 89,03 % 
 
 

&RPPHQWV� Fig. 3 presents a typical classified image by an expert using ground 
truth data. As illustrated the number of classified pixels (shown in color zones) is very 
low (1.43%). Note that in the whole image only 10 pixels were identified as the :DWHU 
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class. In spite of the small training set and the large space of search (spectral value of 
pixels is represented by 32 bits), the discovered set of rules is able to produce a 
coherent classified image. 

5HVLVWDQFH� WR� WKH� QRLVH� RI� WKH� OHDUQLQJ� SURFHVV�� The resistance of the classifier 
system to the noise has been evaluated numerically. Fig. 5 illustrates the protocol 
used for validation. ('DWDM ,([SHUWM ) are the training data and ('DWD N ,([S N ) are the 
validation data. These sets are of the same size and are generated by taking for each 
one the half of the pixels of the whole image. 1RLVH�LPDJH�UDWH� is a function which 
perturbs UDWH% pixels. 9DOLG�� is a function which generates the weighted performance 
of classifiers, according to the discovered rules (5XOHV) and an expert classification 
(([SHUW) of the remote sensing image ('DWD). &\FOH�UG�UH� computes the performance 
of the rules learned from a UG% perturbed data and a UH% perturbed expert image. The 
curves below, & OQPSR P =&\FOH�>����@���� DQG� & T U V)T W R=&\FOH���>����@� illustrate the 
weighted performance of the rules on the noisy training set. 
 

Cycle(nd,ne) 

  NoRules=50 

  NoGenerations=50 

  Sampling of data=10% 

  Rules=Learning( 

   Noise(DataL , rd), 

   Noise(ExpertL , re)) 

  Perf=Valid(DataT,ExpertT,Rules) 

  return Perf 

EndCycle 

 

 
 <>= ?�@�X�@

 The validation protocol and the resulting graph 

We performed 11 runs for each test (perturbation of the data or the expert image). 
Standard deviations of the rule performances are : Y Z [ Z\σ = 0,042 and ] ^ _`

expσ = 0,026. 
The two case studies have demonstrated the high capacity of the evolution-based rules 
to interpret and classify heterogeneous and complex images (e.g. high dimension, 
large number of bands and noisy data that provide a computational complexity of 
O(n3), which is quite heavy for a deterministic algorithm). The quality of 
classification is very high even if there were a high number of noisy bands and mixed 
pixels. It must be noted that the quality of learning is highly related to the quality of 
the classified image used for rule discovery. The discovered classification rules are 
simple and easy to interpret by remote sensing experts. They are also mutually 
exclusive and maximally specific. The learning time was relatively long due to the 
large image size and the chosen parameters for the evolution process, but the 
computing time optimization was not addressed in these experiments. 

During the experiments it was observed that the best rules use 0% mutation of 
bands, 5% mutation of intervals, 41% mutation of borders, and 53% crossovers. In 
spite of weak mutation rate (5-15%), mutation operators have demonstrated high 
efficacy. The diagram shows that this evolutionary process is able to admit nearly 5% 



Evolutionary Mining for Image Classification Rules                                                 246                                  

of noise on the data or the expert image without significant loss of quality. We have 
observed that by adding more than 5% of noise, the rule quality does not clearly 
decrease. Rule generalization quality has also been evaluated and it is worthwhile to 
mention that the best set of rules on high-resolution images can be applied on a 23-
times larger image with a loss of quality less than 0.02%. 

Finally, high correlation was observed between obtained results and statistics 
carried out on the remote sensing image (spectrogram statistics, excluding noisy 
bands). Classified images by the discovered rules have shown that the evolution-
based process is able to faithfully reproduce the human expertise. 

�� &RQFOXVLRQV�DQG�SHUVSHFWLYHV�
This article has described an evolution-based method applied to remote sensing 

images. The system has discovered a set of LI�«�WKHQ image classification rules using 
the fitness function based on class recognition quality. These rules, which were 
proven robust and simple to understand for the user, improve the accuracy of 
classifications proposed by the expert, and are sufficiently generic for reusing them 
on other portions of remote sensing images. 

Taking into consideration image complexity and noisy data, the results of our 
experiments are very encouraging. Case studies have demonstrated that the obtained 
rules are able to reproduce faithfully the terrain reality. 

The rules are well adapted to recognize large objects on the image (e.g. sport 
lands), as well as the smaller ones (e.g. trees, shadows, edges of the buildings). The 
redundant or noisy bands have been successfully identified by our rule representation. 
The formulation of rule representation has allowed for the modeling of a spectral tube 
adapted to the granularity of spectral reflectance. The proposed rules initialization 
seems to be well suited to large volume of data. It has considerably reduced the search 
space by generating initial rules close to the final solution. 

The genetic system developed in this research work, called ICU, is currently 
available on our web site http://lsiit.u-strasbg.fr/afd. A new version of 
ICU is under development, including a more powerful representation of rules 
including spatial knowledge, temporal relations, hierarchical representation of 
objects, and new genetic operators.  
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