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Abstract

In this article, two learning classifier systems based
on evolutionary techniques are described to classify remote
sensing images. Usually, these images contain voluminous,
complex, and sometimes erroneous and noisy data. The first
approach implements ICU, an evolutionary rule discovery
system, generating simple and robust rules. The second
approach applies the real-valued accuracy-based classifi-
cation system XCSR. The two algorithms are detailed and
validated on hyperspectral data.

1. Introduction

The emergence and the improvement of remote sens-
ing, aircraft simulation, airborne and spaceborne sensor sys-
tems as well as other kinds of such survey technologies have
enhanced our means to explore and to collect data consid-
erably. However, this rapid increase in data results in more
time and cost for storage as well as for the analysis and the
mining of the data. At the same time, a lot of useless infor-
mation can hide valuable information. These observations
force data miners to focus on elaborated and sophisticated
algorithms to overcome this rapid data growth. Strong effort
has been devoted to develop new classification algorithms
and improve techniques used to classify statistical data sets
[?, ?, ?]. Relatively few data miners in the machine learning
community have considered how classification rules might
be discovered from raw and expertly classified images. The
images, registered by various satellites (e.g. SPOT, CASI,
Quick Bird), generally contain voluminous data. Some-
times they are very noisy due to the presence of various de-
tails in a high spatial resolution or unfavorable atmospheric
conditions at the time the images were acquired. These data
can embrace different cameras having various spectral and

spatial resolutions [?].

It appears that learning classifier systems (LCS) are
well suited to remote image mining. Based on evolution-
ary algorithms [?], a LCS generate classification rules able
to adapt themselves according to the available data, envi-
ronment, and the evolution of classes. To our knowledge,
there are only a few published studies on classifier systems
applied to remote sensing images. This research focus on
thepixel classification problem(one pixel is always classi-
fied in one class). ICU, developed at the LSIIT (software
available on [?]), was compared to XCS, an other classi-
fier system, known to be robust, according to many early
studies [?, ?, ?]. ICU is an evolutionary rule discovery sys-
tem combining a genetic algorithm (GA) and a population
of classification rules describing constraints for each pixel
from the data. XCS is a learning classifier system, devel-
oped by S. Wilson, that evolves a rule set online based on
prediction accuracy and a niche genetic reproduction [?].

The paper is structured as follows. Basic terms and
properties of hyperspectral images are introduced in sec-
tion 2. Section 3 describes the two algorithms ICU and
XCS. In this section, the main components and the quality
measures of the two methods are explained. A CASI image
is analyzed in section 4 and results are compared.

2. Hyperspectral remote sensing images

An hyperspectral image is a set of two dimensional ar-
raysIX,Y,S where(X, Y ) is respectively the width and the
height of the image andS the number of spectral channels
(or spectral bands). The termhyperspectralrefers to an im-
age which includes more than 20 spectral bands (similar to
those produced by ROSIS and DAIS). Conversely, the term
multispectralis used in the case of a low number of spectral
bands, as CASI and Quick Bird remote sensors. A value
I(x, y, s) in this array is the reflectance observed on the



pixel location(x, y) at the wavelength corresponding to the
spectral channels. A reflectance value corresponds to the
intensity of the response obtained from the ground.

To illustrate our approach, a multispectral image from
the CASI sensor has been used (Airborne spectrometer,
1175x673, 15 spectral channels (0.43µm - 0.87µm), high
resolution (1.3m)). Learning and testing were applied on
subsets of this image (142x99 points), and only 1540 points
were validated by human ground truthing. Thus, accord-
ing to the validation strategies used (hold-one-out, cross-
validation), testing sets represent 20% to 50% of the origi-
nal validated image points.

3. Evolutionary methods to discover the classi-
fication rules

The idea of rule mining is to discover a pool of classi-
fiers, where each classifier, taking a pixel as input, returns
its class. The discovery of a classification rule is a combi-
natorial problem. The search space is very large. It depends
on the size of the image, the pixel spectral resolution, and
the rule encoding. Evolution-based approaches and particu-
larly Learning Classifier Systems (LCS, [?]) are specifically
designed to search efficiently the space of classifiers.

For a long time, many generic classifiers systems were
developed to explore the potential of these techniques in-
cluding ZCS, LFCS [?], S-classifiers, ICU [?], XCS-R [?]
and Fuzzy XCS. XCS was chosen to compare with ICU be-
cause it is one of the most used and developed algorithm
in the field of learning classifier systems. The key differ-
ences between the two systems are the following: the fitness
(based on predictive positive accuracy in ICU, on accuracy
in XCS), the rule representation (conjunctions of disjunc-
tions in ICU, disjunctions in XCS) and the population (only
one rule for each class in ICU, a whole population set in
XCS). The classical binary strings of classifier systems were
replaced by real-valued vectors. In the following sections,
the term ’XCS’ was used instead of the more appropriated
term ’XCS-R’ introduced in [?].

3.1. ICU

3.1.1 Overview of the algorithm

To discover a classification rule, ICU uses a Michigan-
like learning classifier system representation, in which each
rule is encoded by one individual [?]. Moreover, separate
pools are used for each class to discover classification rules.
Only one rule is kept for each class at the end of a run.
Steady-state strategy is used for reproduction and replace-

ment. The pool contains only 100 to 200 individuals for the
discovery of each class and 2000 generations were used.
The most common values for the crossover and mutation
rate were tested (e.g.(χ;m) = (0, 8; 0, 05)). After having
tested a number of selection methods as randomly, elitism,
roulette wheel and tournament, a roulette wheel selection
based on the rank in the pool of the individual’s fitness was
retained for the replication of individuals and tournament
for generational replacement.

Classification rules are symbolic expressions and de-
scribe conditions to be held and actions to be taken if the
conditions are satisfied. From a functional point of view, a
rule represents a piece of knowledge about a class by a con-
ditional expression, such asif <conditions> then<class>.
The "condition" part of a rule specifies a constraint in the
system such as value, color, form, shape, etc, correspond-
ing to conditions that must be fulfilled in order to activate
the rule. The "class" part defines the class of the instance
currently treated by the rule given the appropriate condi-
tions are satisfied. One asserts that the evolved rules should
be rapidly evaluated and easy to interpret by any user. As
a result, condition representation using the concept of an
interval could be fully adequate for remote sensing image
classification. In terms of machine learning, the rules have
to be absolutely specific, meaning that they have to cover
the extreme maximum and minimum pixels belonging to
any given class. A short discussion about the representation
of the rules follows, but we refer the reader to [?] for more
information.

Before rule specification, recall that a pixel is encoded
as a spectral vector, describing values of reflectance for the
n bands of the remote sensing image, i.e. a pixel can be
considered as a point in anRn space. In our system, the
condition of any rule is built on the concept of spectral
intervals defining a given band corresponding to a given
class. Such intervals are a pair of integer numbers. To pre-
cisely specify the class definition, a set of intervals is de-
fined for each band of the remote sensing image. Taking
into consideration all bands, the condition part is defined as
a set of hyper-rectangles in aRn space :<condition> `∧n

i=1

∨ki

j=1(m
j
i ≤ bi ≤ M j

i ) wheremj
i andM j

i denote,
respectively, the minimal and maximum reflectance values
allowed for a pixel belonging to a classC for bandi. Pa-
rameterk is fixed. It defines the maximum number of dis-
junctions allowed.

The chosen representation is mainly due to simplic-
ity, compactness and uniform encoding of spectral con-
straints. During experimentation, the representation has
demonstrated rapid execution of genetic operators and ef-
ficient computing.



3.1.2 Genetic operators

Rule initialization

Generally, in remote sensing, the initial population of
classification rules is randomly created from raw images
and given classes, and then evolved by a GA. In this study,
in order to efficiently develop the classification rules, a GA
initializes interval values according to spectral limits of the
classes designated by an expert for valid zones of the re-
mote sensing image. More about initialization algorithms
can be found in [?]. Rule initialization considers the val-
ues of reflectance most frequently recorded in the spectra
of a given class. Fig 1 presents spectrograms for 5 classes
(shown from left to right). Like a pencil-drawing drawn
several times, the figure shows the most frequent values for
a given wavelength in darker tones.

Figure 1. Spectrogram representation of the
data.

Initial classification rules are created based on the
maximum and minimum of the most frequent values ob-
served on the spectrogram for each class. Two algorithms
for the generation of a pool of rules have been proposed,
according to the expected solution given by the expert, but
allowing also some diversity. The first, calledMinMax, cre-
ates maximum intervals covering all the pixels belonging
to a given class, and the second algorithm, calledSpectro,
integrates the spectral distribution density and interval par-
titioning. The proposed rule initialization seems to be well
suited for large volumes of data considerably reducing the
search space by generating initial rules close to the final so-
lution.

Crossover operator

Crossover exchanges hyper-rectangles at a randomly
selectedlevelin these rules. Alevelis the depth of conjunc-
tion or disjunction in a rule, as if it was represented by a
hierarchical tree, as in genetic programming. The two new
rules inherit some rule conditions from each parent rules.
Each result of the crossover process has to be validated.
Validation of the various rule attributes (border limits viola-
tion, overpassing, etc) is carried out by a process of interval
merging. However, merging not only decreases the number
of intervals in the rules, but also generates some informa-
tion loss. In fact, in order to avoid premature convergence
of rules, it is generally important to preserve two distinct in-

tervals instead of a single aggregated one for the following
generation.

Mutation operator

The mutation operator plays a dual role in the system:
(1) it provides and maintains diversity in the population,
and (2) it results in a local search mechanism in conjunction
with selection. Mutation randomly selects one operation in
a library of operatorsand applies it to a rule selected with
a given selection scheme. The selected operator can be: (1)
suppression of a spectral channel (band mutation), (2) ad-
dition or suppression of a constraint, and (3) shift or cut of
a constraint in the spectral definition space of the data (in-
terval mutation). The complexity of this operator including
all the sub-operators ensures that a more diverse offspring
population will be obtained.

Stop criterion

The evolution process converges according to some
statistical criteria indicating if the current rule is near to a
global optimum or if the population of rules will not evolve
anymore. In our system, not only the evolution of quality of
the best discovered rule is taken into consideration, but also
a minimum acceptable quality defined by a user, a process
stability measure, and a maximal number of generations. If
Q0 is the fitness of the best rule in the current generation
andQk is the quality of the best rule obtained during the
lastk generation, thenQ0 is compared to the mean ofQk

for P generations. The GA is stopped when the difference
falls below a given thresholdE.

3.1.3 Quality Measures

The measures strongly depend on the application do-
main. The evaluation criteria in data mining are now con-
sidered fairly standard, but to make our approach more
clear the principal quality measures are detailed. In image
classification, the evaluation is usually based on the con-
fusion matrix containing the classification produced by the
classifier (Iclass) and the classification given by an expert
(Iexpert). Table 2 defines the variables necessary to com-

pute this measure.PCj

Ci
is the number of pixels of the class

Ci classified in the classCj by the classifier. Other values
are explained later.

A very popular measure is a classifier accuracy that
measures the proportion of correctly classified pixels with
respect to all pixels forn classes;

Qaccur =

∑n
i=1 PCi

Ci∑n
i=1 Ω(Ci)

(1)

The weakness of this measure is that it only takes cor-
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Figure 2. Confusion matrix for computing the
quality measures.

rectly classified pixels into consideration. To make the clas-
sification results more specific, three other related measures
are defined:Qppa positive predictive accuracy,Qsens sen-
sitivity andQspe specificity.

The positive predictive accuracy,Qppa, measures the
classifier reliability of correctly classifying pixels compared
to all pixels associated by a classifier to a given class:

Qi
ppa =

P
Ci
Ci∑n

k=1 P
Ck
Ci

Qi
sens =

P
Ci
Ci∑n

k=1 P
Ci
Ck

Qi
spe =

∑n
j=1,j 6=i

∑n
k=1,k 6=i P

Cj
Ck∑n

j=1,j 6=i

∑n
k=1 P

Cj
Ck

The sensitivity (Qsens) measures the fraction of cor-
rectly classified pixels with respect to all pixels classified
by an expert to a given class (i.e. proportion of true posi-
tives). The specificity (Qspe) measures the rate of correctly
classified pixels not being in the given class (i.e. proportion
of true negatives).

The four above defined measures may give a faithless
image of classifier performance in case of non equal distri-
bution of pixels over a set of classes. Therefore, it is recom-
mended to use an additional measure of weighted accuracy
computed as follows:

N i
final = αQi

sens + (1− α)Qi
spe (2)

Parameterα allows the adjustment of the relative
weight given to true positives and true negatives. As men-
tioned before, the measure is used for certain classes that are
under- (strongerα) or over-represented (lowerα). By de-
fault the value of this parameter equals to 0.5, which means
that the same importance is given to both measures. The
proposed measure has a number of advantages; mainly it is
independent of the pixel processing sequence, invariant of
the size of classes, and effective for class discovery with a
highly variable number of pixels. The global quality mea-
sure is a weighted average of theN i

final by the size of each
class.

Nglobal =

∑n
i=1 Ω(Ci)N i

final∑n
i=1 Ω(Ci)

(3)

All these quality measures have been tested for differ-
ent values ofα and were applied on confusion matrices.

3.1.4 Classifier selection

A pixel passed to the system may activate several clas-
sifiers. The classifiers are evolved independently but during
the classification process a pixel may activate several rules.
At the end of a process, a selection mechanism is needed
to choose the appropriate rule when more than one rule is
available for a given pixel. Two methods have been devel-
oped that can be used also if no rules are activated by the
pixel. Note that this operator acts only in the case when 0
or more than one rule is activated. If only one rule is acti-
vated, no modification of the result is done and the rule is
kept as is.

The first one, calledBestScore, simply selects the rule
depending on the fitness value obtained from the last pass
in the learning set. Among then activated rules the rule
with the best fitness is selected. Ifn = 0, the number
of constraintsnc of the rules (i.e. for each spectral chan-
nel) accepted by the pixel is tested, and the rule with the
highestnc wins. In case of equality, the first rule is cho-
sen. This seems to be a naive method. The problem comes
from the use of the fitness value. Since the value is not
directly connected to the data, a skew may be introduced
in the evaluation method. In fact, the method has shown
good results with expertise data coming from unsupervised
learning. In this case, the algorithm should deal with very
accurate classes but also noisy classes (wasteclasses). In
this case, selection by the means of fitness is very useful.

To avoid the use of values dependent only on the
paradigm, a second method has been designed, called
CloseCenter. The deviation of the spectrum of the pixel
compared to the mathematical center of each constraint in
the rule is computed. Forn > 1, the smallest deviation se-
lects the gaining rule and forn = 0, the same technique
as before is applied. Note thatBestScoreandCloseCenter
adapt dynamically to the data (for each pixel), but as fitness
and spectrum represent a continuum between two close pix-
els, the obtained classification is in most cases coherent.

3.2. XCS

XCS evolves a set of rules, the so-calledpopulation
of classifiers. Rules are evolved by the means of a GA. A
classifier usually consists of a condition and an action part.
The condition part specifies when the classifier is applicable
and the action part specifies which action, or classification,
to execute. In contrast to the original LCSs, the fitness in
the XCS classifier system, introduced by Wilson [?, ?], is



based on theaccuracyof reward predictions rather than on
the reward predictions themselves. The reward is based on
the basic fact than the class predicted by the whole pool of
classifiers match the expert decision. Thus, XCS is meant
to evolve not only a representation of an optimal behavioral
strategy, or classification, but rather to evolve a representa-
tion of a complete payoff map of the problem. That is, XCS
is designed to evolve a representation of the expected payoff
in each possible situation-action combination.

Since our system is confronted with real-valued data
in this study, the real-valued extension of XCS (XCS-R) in-
troduced in [?] was applied. Recently, several studies were
reported that show that XCS performs comparably well to
several other typical classification algorithms in many stan-
dard datamining problems [?]. This section provides a short
introduction to the XCS classifier system. For a more de-
tailed introduction to XCS and XCS-R the interested reader
is referred to the original paper on the real-valued XCS ex-
tension [?].

3.2.1 Overview of the algorithm

As mentioned, XCS evolves a population [P] of rules,
or classifiers. Each classifier in XCS consists of five main
components: Thecondition partspecifies the subspace of
the input space in which the classifier is applicable, or
matches. In our real valued problem, a condition specifies
a conjunction of intervals, one for each attribute. If the cur-
rent problem instance lies within all specified intervals, the
classifier matches. Theaction partspecifies the advocated
action, or classification. Thepayoff predictionestimates the
average pay-off encountered after executing action A in the
situations in which the condition part matches. Thepre-
diction error estimates the average deviation, or error, of
the payoff prediction. Thefitnessreflects the scaled aver-
age relative accuracy of the classifier with respect to other
overlapping classifiers.

Learning usually starts with an empty population.
Given current input, the set of all classifiers in [P] whose
conditions match the input is called the match set [M]. If
some action is not represented in [M], a covering mecha-
nism is applied. Covering creates classifiers that match the
current input and specify the not covered actions. Given
a match set, XCS can estimate the payoff for each possible
action forming a prediction array P(A). Essentially, each en-
try P(a) reflects the fitness-weighted average of all reward
prediction estimates of the classifiers in [M] that advocate
classification a. The payoff predictions determine the ap-
propriate classification. During learning, XCS chooses ac-
tions randomly. During testing, the actionamax with the
highest valueP (amax) is chosen.

3.2.2 Rule selection

As in ICU, the same pixel may activate several rules
coding for different classes. This behavior can be con-
strained for solving problems asone-to-one classification.
Two methods (MaxConfidentand ScoredConfident) were
tested, asking the pool to give a unique class for each pixel:
In the first one, only the rules which have a correct self-
confidence are considered, in other terms, payoff prediction
should be greater than a given threshold (fixed in our experi-
ments to the half of the maximum value of payoff prediction
for the current problem). Then the most frequent class ob-
tained from rules which had matched the pixel is returned.
In the second one, all the rules which have matched the pixel
are considered. For a classc, a score is computed as follows
for each ruler:

Sr =
∑

(PrFr)∑
Fr

(4)

wherePr is the prediction payoff of the ruler andFr is its
fitness. The action of the rule with the bestSr is returned.
These two methods were experimented for different subsets
of CASI data and for a pre-treated expertise set as follows:
if more than one class was affected to the same pixel, only
the dominant class was retained according to the percentage
of its concentration given by the expert.

4. Case studies

In this paper, a remote sensing image of San Felice
(Lagoon of Venice) has been chosen. This image contains
multispectral data (CASI 15 bands), with 142x99 pixels,
16 bits per pixel and 1.3m terrain resolution [?]. The case
studies consider a typical problem of classification for rural
zones, with only five requested classes but including a high
percentage of mixed pixels. Learning was carried out on
50% of the 1540 points. Validation was performed on the
whole data. The table 3 summarize our experiments.

Comments. Results are detailed by classes because
some are really difficult to deal with (in particular spaM),
and decrease the global quality. It should be noticed than the
’P’ at the end of a name of a class denotes a pure class (eas-
ier to learn) and a ’M’ denote a mixed class (a mix between
a dominant class at 50%, and several other classes, what
we call amixel). Classification is quite globally correct
(on the confusion matrix not shown there, accuracy=81.1%
and Kappa-index=0.81). The classification with XCS shows
better results, but ICU classify at a comparable level, espe-
cially that XCS has spent many classifiers to separate spaP
and spaM correctly.



ICU XCS
Class Qsens Qppa Qsens Qppa

sarP 0.79 0.98 0.95 0.95
lisr 1 0.65 0.89 0.91
spaP 0.99 0.69 0.92 0.81
spaM 0.13 1 0.48 0.78
limM 0.93 0.93 0.98 0.91
TOTAL 0.77 0.85 0.84 0.87

Figure 3. Qualities measures.

5. Conclusion

Until now, applications of evolutionary methods in the
domain of remote sensing image analysis are still very rare.
A few recent reports have shown interesting results using
genetic programming approaches [?]. In this paper two
evolution-based classifiers have been described and com-
pared on real remote sensing data. The case studies have
demonstrated a comparable performance for the interpre-
tation and the classification of heterogeneous and complex
images (e.g. high number of mixels and noisy data), but
more sudies are surely essential to have a better understand-
ing of LCS applied to remote sensing data. Taking into
consideration image complexity and the level of noisy in-
formation, the results of the applied evolutionary methods
in our experiments are very encouraging. The learning time
was relatively short (using a Pentium 2GHz, it lasts 5 min-
utes for ICU, 15 minutes for XCS). ICU discovers an "if...
then" classification rule for each class using a fitness func-
tion based on image classification quality. In general, these
rules are robust and can manage several disjunctions of con-
straints. They are able to describe the complexity of the an-
alyzed spectra. XCS learns a pool of classification rules for
all the classes. These rules have improved the accuracy of
the expert and have been sufficiently generic for applying
them on other parts of satellite images.

The representation of the rules allows the modeling of
constraints adapted to the granularity of spectral reflectance.
Hence, these rules-based approaches are of great interest
when compared to traditional methods of classification. But
further investigation of ICU and XCS learning efficiency are
necessary. For instance, research about post-processing the
rule base represents a great challenge for XCS [?]. It should
also be noted that more powerful representation of the rules
in ICU including spatial knowledge and constraints adapted
to temporal series should give better results and yield more
relevant rules.

References

[1] Discovery of classification rules: evolutionnary
classifiers, software available at http://lsiit.u-

strasbg.fr/afd/logiciels/icu/.
[2] Tidal Inlets Dynamics and Environment, Research Project

Supported by the European Commission under the Fifth
Framework Programme, contract n◦ EVK3-CT-2001-
00064, http://www.istitutoveneto.it/tide, 2001-2005.

[3] M. J. Barnsley, P. Hobson, Z. Hesley, K. Evans-Jones,
T. Quaife, P. Lewis, M. Disney, J.-P. Muller, A. Strahler,
W. Lucht, and A. Hyman. Determination and validation of
land-surface biophysical properties using SPOT-4 vegetation
and HRVIR: Interim report. University of Wales Swansea,
1998.

[4] J. A. Benediktsson, P. H. Swain, and O. K. Erase. Neural
network approaches versus statistical methods in classifica-
tion of multisource remote sensing data.IEEE Transactions
on Geoscience and Remote Sensing, 28:540–551, 1990.

[5] E. Bernado-Mansilla and J. M. Garrell-Guiu. Accuracy-
based learning classifier systems: models, analysis and ap-
plications to classification tasks.Evol. Comput., 11(3):209–
238, 2003.

[6] A. Bonarini. An introduction to learning fuzzy classifier sys-
tems. InLearning Classifier Systems, From Foundations
to Applications, pages 83–106, London, 2000. Springer-
Verlag.

[7] M. V. Butz, K. Sastry, and D. Goldberg. Tournament se-
lection in XCS. GECCO-2003: Proceedings of the Fifth
Genetic and Evolutionary Computation Conference.

[8] J. A. Gualtieri and R. F. Cromp. Support vector machines
for hyperspectral remote sensing classification.Proceedings
of the 27th AIPR Workshop: Advances in Computer Assisted
Recognition, pages 221–232, October 1998.

[9] J. Horn, D. E. Goldberg, and K. Deb. Implicit Niching in
a Learning Classifier System: Nature’s Way.Evolutionary
Computation, 2(1):37–66, 1994.

[10] J. Korczak and A. Quirin. Evolutionary mining for image
classification rules. InEA 2003 : 6th International Confer-
ence on Artificial Evolution, Marseille, 2003.

[11] P. L. Lanzi. A study of the generalization capabilities of
XCS. In T. Bäck, editor,Proc. of the Seventh Int. Conf. on
Genetic Algorithms, pages 418–425, San Francisco, 1997.
Morgan Kaufmann.

[12] D. LeRoux and M. Littman. Reinforcement learning using
lcs in continuous state space.Proceedings IWLCS-2004,
2004.

[13] A. Quirin, J. Korczak, M. V. Butz, and D. E. Goldberg.
Learning classifier systems for hyperspectral image process-
ing. Research Report, ULP-LSIIT-RR-2004-01, 2004.

[14] B. J. Ross, A. G. Gualtieri, F. Fueten, and P. Budkewitsch.
Hyperspectral image analysis using genetic programming.
Appl. Soft Comput., 5(2):147–156, 2005.

[15] S. W. Wilson. Generalization in the XCS classifier sys-
tem. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb,
M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg,
H. Iba, and R. Riolo, editors,Genetic Programming 1998:
Proceedings of the Third Annual Conference, pages 665–
674, University of Wisconsin, Madison, Wisconsin, 22-25
1998. Morgan Kaufmann.

[16] S. W. Wilson. Get real! XCS with continuous-valued inputs.
Lecture Notes in Computer Science, 1813:209–222, 2000.


	. Introduction
	. Hyperspectral remote sensing images
	. Evolutionary methods to discover the classification rules
	. ICU
	Overview of the algorithm
	Genetic operators
	Quality Measures
	Classifier selection

	. XCS
	Overview of the algorithm
	Rule selection


	. Case studies
	. Conclusion

