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Abstract- The traditional classification algorithms for
multispectral images assign only one class to each pixel.
However, such pixels are actually a mixture of the
spectral reflectance values of several different types of
ground, of which the various abundances characterize
the final shape of the observed spectrum. Within the
framework of supervised learning, a representative so-
lution was defined to solve this kind of problem using a
genetic algorithm. This paper introduces a representa-
tion of the selected and various associated genetic opera-
tors (fitness, crossover, mutation) used in remote sensing
image classification, as well, it describes a comparison
of various representation using two more algorithms on
three data sets.

1 Introduction

Exploitation of satellite images with high spatial and spec-
tral resolution leads to a double problem. The first question
is how to deal with the treatment of the huge quantity of
available data (30 to 50 cm of spatial resolution on 10 to 60
km2, which can represent several GB of data), while often
exploiting precise measurements by geographers, who re-
cover and process the samples of ground truth data with the
goal of training or validation (ground truthing) ?

In spite of the very low spatial resolution, in rural as
well as in urban areas, a pixel often contains various kinds
of vegetation in a symbiotic relationship, one in relation to
the other, and the resulting pixel is called amixel. Expert
measurements are often very localized on the ground with
a resolution often lower than that of the image, but at the
same time, increasingly precise. Composition percentages
of certain samples are known and can be used to detail the
contents of the pixels and to pass from the resolution prob-
lem of using standard classification (one-to-one classifica-
tion where a pixel is equivalent to a class) to anunmixing
problem (one-to-N classificationor subpixel classification,
[9]), i.e. to consider the relative proportions of the various
components of the land cover types present in each pixel, in
order to obtain an inverse Bidirectional Reflectance Distri-
bution Function (BRDF) model, which gives the reflectance
of a target as a function of illumination geometry and view-
ing geometry, [4, 16]).

In the literature, the problem ofsubpixel classificationis
mainly solved by two methods: Spectral Mixture Analysis
and Fuzzy Classification [14]. For instance, in the Linear
Mixture Model (LMM), an approach that was tried in many
early studies [13, 15, 19], the BRDF of a non-homogeneous
surface is expressed as the weighted sum of the BRDF of
the homogeneous components of this surface [4]. In spite of

its simplicity, many problems have been encountered in this
approach, in particular, the fact that the models are not suf-
ficiently robust for separating BRDFs with acceptable pre-
cision. Moreover, the choice of the pure pixels for training
requires human intervention, which is not always free of er-
rors. Other models exist such as Probabilistic Models (Max-
imum Likelihood, neural networks) and Geometric Models
[10], which take into account the shape of the trees and the
direction and distribution of the illumination from the sun,
but usually they are much more complex and relatively re-
cent [14, 10].

Conversely, unsupervised techniques have been pro-
posed, consisting of the identification of proportions di-
rectly from the observed spectra, and some are based on
simplex [21, 20]. Moreover, more recent studies, using the
ICA algorithm, have modeled reflectances of the pixel for
each wavelength as independent processes [18]. But these
methods are very sensitive to noise; the displacement of
some boundary points can considerably modify the results
[17].

All these data constitute a significant problem with the
search space, in learning well as in exploitation. This paper
presents an evolutionary approach based on genetic algo-
rithms, known to be scalable [11]. Relatively simple rules
of classification are discovered which can be applied there-
after to other remote sensing images. The structure of this
paper is as follows: section 2 presents the ICUX algorithm
in a general way, section 3 gives the appointed representa-
tion for the genetic individuals, and sections 4 to 6 report in
detail the genetic operators used. In section 7, the presented
algorithm is compared to two approaches, one based on a
neural network (Probabilistic Model) and the other on SVM.
These approaches were chosen because they are known for
their robustness in this field [5, 8]. And finally the conclu-
sion.

2 The ICUX algorithm

The presented algorithm is based on a previous version
called ICU [12, 1]. Very briefly, but we refer the reader to
our previous publications, ICU is able to discover classifica-
tion rules based on conjunctions of disjunctions of spectral
intervals (see Fig. 1). The ICU rules are shorter than those
which are produced with ICUX (ICU Unmix), but they only
deal with theone-to-one classificationproblem. The inte-
gration of the class proportions in ICU is only possible by
the integration of the geographers domain knowledge for
validating the increasingly vast and precise knowledge ac-
quired on the ground. This remains especially useful for
rural areas, in which the delimitation of the objects is not as



contrasted as in urban cases, and for which an object or a
contextualapproach is more suitable.

The search of a solution for theunmixingproblem begins
at the definition then the adaptation to the subjacent problem
of a genetic classifier taking as a parameter the reflectance
values of a pixel, and returning, for each learned class, the
proportion of these classes in the pixel. The selected repre-
sentation for this classifier allows the encoding, formallyby
constraints, of the range of acceptable values of the spec-
trum for each class. These constraints are in fact conjunc-
tions of disjunctions of intervals, and could be viewed as
hyper-rectangles in the space of data. Thus learned knowl-
edge could easily be representable for the purpose of pre-
sentation and validation by a human expert. The presence of
disjunctions in the constraints makes it possible to solve in
certain cases some non-linear problems. Finally, these rules
are evolved directly from the data, without requiring pre-
liminary preprocessing of the whole of the image, therefore
this can represent a fast manner for classifying new images,
provided that the learned rules are sufficiently robust.

3 Genetic individuals

3.1 Representation of a classifier

A classifier (agenetic individual) is composed of as many
rules as there are classes to learn. Thus the adaptation of
the classifier is done in parallel for all the classes. Each rule
contains as many conditionsCi as there are bands in the
image or exogenic attributes for each sample of data (see
figure 1).
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Figure 1: Genotypic and semantic representation of a ge-
netic individual.

The conditions are linked together by conjunctions, for
instance(a ∨ b) ∧ c. Each condition contains a variable
number of intervals, for which the domain of value and type
(float, integer, boolean) depend on the data. The intervals
are linked together by disjunctions. Thus each rule repre-
sents a constraint as a hyper-rectangle for a given class. A
data is said to be in "perfect matching" if all the values re-
spect the conjunction of disjunctions of intervals for a given
class and is apart from the intervals for the other classes.
For instance, if there are 5 classes to learn, aperfect match-
ing for class 2 could be represented by the vector[01000].
To make it possible for the classifiers to report various con-
centrations of pure classes in the form of continuous per-
centages, a calculation of correlation is carried out when a
datum does not respect the intervals of a given rule. The
goal of the genetic algorithm is to adapt the size and posi-
tion of these hyper-rectangles so that they conform to the

model of concentration fixed by the expert. With condition
components of the rules evolving in an independent way,
it is possible for the classifier to return a null or a maxi-
mum concentration at the same time for all classes (if nec-
essary), or to discover classes which overlap partially or are
not in the data (correlated attributes). The following section
presents the techniques used for quantifying thematching
of a rule and thus of a classifier for a given pixel.

3.2 To match a rule

The matchingfunctionM(R, P ) = r is defined for each
rule R composing a classifier and returns a real between 0
and 1 corresponding to the proportionr of pure class con-
tained in the pixelP = [p0, . . . , pi, . . . , pn] (n is the num-
ber of bands). The application of a classifier on a pixel con-
sists in applying the various rules contained in this classifier
and in collecting the various proportions for each class. For
each intervalIi = [ai; bi] (0 ≤ i ≤ n) of rule R, the func-
tion M(R, P ) calls upon a functionM(Ii, pi), which can
be whatever, but which takes its maximum in the interval
[ai; bi]. At the time of a disjunction of intervals, the largest
value ofM is retained.
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Figure 2: Representation of a satisfactorymatchingfunction
M(Ii, pi) for an interval[a; b] and a given band value.

The function, which was retained in experimentation, is
presented on the figure 2. The function is defined in the
following way:

M(Ii, pi) =







1 if pi ∈ [ai; bi]
bi−ai

bi−pi

if pi < ai

bi−ai

pi−ai
if pi > bi

wherepi is the value of the pixelP for the bandi and[ai; bi]
the values of the corresponding interval defined in the ge-
netic individual.M is worth 1 for a perfectmatchingand
tends towards 0 if not.

This function is only dependent on the size of the inter-
vals, therefore independent of the scale of the data. The
genetic algorithm will have to adapt the position and the
size of the intervals directly according to the analyzed spec-
tral context. The function is constant in the interval[ai; bi]
so as not to influence the performance of the rules if the
distribution of the spectrum is not homogeneous (checked
assumption). Other functions (Gaussian, ...) are being stud-
ied.



Thematchingfunction for a whole ruleR takes into ac-
count the score obtained for each band and is defined in the
following way:

M(R, P ) =
ε

√

∑n

i M(Ii, pi)ε

n

wheren is the number of bands andε is a strictly positive
parameter controlling the influence of the extreme values
(for instance,ε = −2 corresponds to a distance within the
context of the LMS error estimation).

The matching of a pixelP with the totality of the clas-
sifier I is defined as being the standardized vector of the
scores obtained for each rule of the classifier. Each com-
ponent of the vector indicates the proportion of the corre-
sponding class in the pixelP .

M(I, P ) =
(

M(R1,P )
∑

i
M(Ri,P ) , · · · ,

M(Rk,P )
∑

i
M(Ri,P ) , · · · ,

M(Rn,P )
∑

i
M(Ri,P )

)

3.3 Verification of the conditions

When the rules are created or modified (by the crossover or
the mutation operators), it is possible that the intervals are
not coherent any more. A random modification of one of
the terminals or a more significant part of the rule can lead
to:

• a terminal MIN higher than a terminal MAX,

• a negative terminal value or higher than the accept-
able range for the values of the pixels,

• auto-intersecting intervals (for instance, [25;105]∧

[80;112] can be merged in [25;112] and [12;13]∧

[14;18] can be merged in [12;18]).
ICUX contains a procedure for checking that such cases

do not occur, and correcting them if necessary by a fusion
or an inversion of the terminals (fusion process).

4 Initial population

To avoid a significant problem with the search space (within
the framework of remote sensing images) and to optimize
the usually long processing time of the genetic algorithms,
a procedure of initialization of an individual adapted to the
image and the expertise provided (mixels) has been set up.
In particular, the number of disjunctions of intervals for
each band and each class are estimated by taking into ac-
count, at the same time, the image and the expertise.

Let n be the number of pure classes andm the number
of bands in the image or attributes in the data to be ana-
lyzed. For each pixelP ther is a corresponding expertise
c1, . . . , cn ∈ R for each pure classK1, . . . , Kn. The value
of the expertiseci of this pixel for a pure classKi is seen
as the contribution of the valuepj of the bandj of the pixel
P for this classKi. It is expressed byh(pj , j) = cn. For
instance, for a pixelP = [1000; 1500; 1300] and an exper-
tiseC = [0.7; 0.1; 0.05; 0.03; 0.12], it is considered that the
contribution of the value ’1000’ for the first band and the
first class is 70%.

If a classKi - a bandj and a disjunction of intervals
DI = [a1; b1] ∨ . . . ∨ [am; bm] - is set, the average con-

tributionµ1(i, j, DI) from all the instances of pixels which
matchDI and the average contributionµ0(i, j, DI) from
all the instances of pixels whichdo not matchDI can be
calculated.

The algorithm then sets an iteration step on the interval
[MIN ; MAX ] of the observed values of the pixels for a
given band, and examines in an exhaustive manner the set
of disjunctions that it is possible to build. For instance, if
for a bandj the values of the pixels of the image are dis-
tributed in the interval [1;1000] and a step is chosen to cut
out the search space in 2 equal parts, disjunctions ’00’, ’01’,
’10’ and ’11’,will be successively examined, i.e. respec-
tively disjunctions: ’∅’ (void), ’ [501; 1000]’, ’ [1; 500]’ and
’ [1; 500] ∨ [501; 1000]’ (which is reduced in[1; 1000] after
the application of the fusion process, see the section 3.3).
For each one of these disjunctions, the contributionµ1 from
the valuesin these intervals and that (µ0) obtainedapart
from these intervals. The algorithm no longer has to select
which disjunction induces the maximum variation of contri-
butionε = µ1 − µ0, which makes it possible to be sure that
the contribution of a given band for a given class is maximal
in the disjunction and minimal outside.

A classifier called ’initial seed’ is built by accumulating
rewarded disjunctions for each band and each class, accord-
ing to the above representation. The initial pool is then ob-
tained by duplicating this seed and by adding slight noise as
many times as there are individuals in the initial population.

These contributions are dependent on the class and the
analyzed band. The final rule (for a given class) consists of a
conjunction of disjunctions obtained for each band to be an-
alyzed. In practice, the exhaustive examination of a search
space cut out in 20 equal parts (see figure 3) require220

(a million) iterations, which represents a computing time of
less than one second on a recent machine. Moreover, only
half of the iterations are really carried out, because by per-
mutingµ0 andµ1, the contribution of complementary dis-
junctions can be deduced (thus disjunction ’10’ substitutes
the disjunction ’01’, for instance). The maximum number
of intervals of a disjunction is limited by cutting the search
space (10 per 20 parts, because the contiguous intervals are
merged).

One of the interesting characteristics of this algorithm
is the fact that it can produce a variable number ofholes
(within the meaning of the number of intervals in a disjunc-
tion), by taking into account, at the same time, the data (all
bands) and the continuous values of the expertise.

However, in spite of the quality of the initialization, re-
fining via the genetic algorithm is necessary for a couple of
reasons: firstly, because of the partiality introduced by the
user-fixed value for the iteration step and then because of
the non-homogeneous distribution of the values of the at-
tributes within the problem space. The following section
presents the genetic operators which have been studied for
refining the value of the terminals of the intervals apart from
the rigid framework fixed by the iteration step, by cutting
them out if the selected resolution for the step is not high
enough.



Band Disjonction µ1 µ0

b= 0 [............X.......] 0.0677 0.0000
b= 1 [............X.......] 0.0619 0.0000
b= 2 [.............X......] 0.0507 0.0000
b= 3 [..............X.....] 0.0547 0.0000
b= 4 [...............X....] 0.0700 0.0000
b= 5 [.............X.XX...] 0.0868 0.0000
b= 6 [...............XXX..] 0.0951 0.0000
b= 7 [...............XXXX.] 0.0996 0.0000
b= 8 [..............XXXXX.] 0.1650 0.0963
b= 9 [..............XXXXX.] 0.0951 0.0000
b= 10 [..............XXXXX.] 0.0949 0.0000
b= 11 [..............XXXXX.] 0.0939 0.0000
b= 12 [.............XXXXX..] 0.0939 0.0000
b= 13 [................XXX.] 0.2200 0.0633
b= 14 [...................X] 0.3300 0.0382
b= 15 [..........X.........] 0.3300 0.0581
b= 16 [..........XX........] 0.0563 0.0100
b= 17 [.........X.X........] 0.0504 0.0000
b= 18 [...........X........] 0.0479 0.0000
b= 19 [.........X..........] 0.0502 0.0000

Figure 3: Example of the disjunctions found for class ’Spar-
tima’ on a remote sensing image of 20 bands. The ’X’ rep-
resents the intervals selected in the disjunction. The spec-
trum of the class start appearing vertically. Note the small
spectrum-holefor bands 5 and 17.

5 The crossover and the mutation operators

The crossover operatorfunctions via the exchange of the
genetic material between the two parents. If the two parents
are better than the average, the assumption is made that the
resulting genetic material will contain a copy of the power-
ful genes and will be transmitted to the children. Thus its
role is to exploit the knowledge acquired by the individuals
of the current population.

In ICUX, the crossover is uniform. A classK is selected
randomly, as well as the respective rulesR1,K andR2,K in
the two individuals to be crossed. For each bandj, the con-
dition C1,K,j of R1,K , as well as the conditionC2,K,j of
R2,K have a probabilityPcross for being crossed. When the
crossover operator is selected, an interval is selected ran-
domly in each condition and it is exchanged. Then, thefu-
sion processis applied to the modified rules.

The mutation operator causes a small number (given
by a probabilityPmut) of minor and random modifications
within genes of an individual. On the basis of the assump-
tion that a limited number of mutations makes it possible to
reach any point of the search space, the mutation operator
is seen as an exploratory operator. It is also used for main-
taining diversity in the population of individuals. Here, this
operator is applied to three levels: a whole condition, an
interval, or one of the terminals of an interval.

The mutation of a whole condition consists of removing,
for a given rule, the condition corresponding to one of the
bands with a probabilityPmut,cond. Several interests are:
the simplification of the rule, the generalization, and the pu-

rification ( if the algorithm considers this band as disturbed
or embracing poor information). The existence of this noisy
band in the image disturbs the process of training as well as
the convergence of the algorithm.

The second type of mutation consists of selecting an in-
terval, with a probabilityPmut,int, in one of the conditions
C, then eliminating it, cutting it into two, replacing it if
the number of authorized intervals for this particular rule
have been reached, or adding an interval inC. The cut-
ting of an interval consists of randomly selecting a point
of cut and then separating the parts if their size is suffi-
ciently broad (for instance,[10; 100] is cut out in two non-
consecutive intervals[10; 15]∧ [17; 100] but [1; 3] is cut out
in [1; 2] ∧ [2; 3]). This is useful to explore the continuous
values of the spectrum below the resolution of the iteration
step of the initialization operator.

Lastly, the mutation of the terminals of an interval with a
probabilityPmut,term modify the two terminals by shifting,
widening, or modifying only one of the two terminals in the
following way. Letω1 andω2 be two real random variables
in the interval[0; 1], α the quantity of added noise,β the
increase in the size of the intervals, andγ the displacement
of the intervals. An interval[a; b] is modified randomly in
[a′′′; b′′′] as follows.

l = α(b − a) a′ = (a − l) + 2ω1l b′ = (b − l) + 2ω2l

(adding noise)

a′′ = (a′+b′)
2 −

β(b′−a′)
2 b′′ = (a′+b′)

2 + β(b′−a′)
2

(centered-widening or -reduction of the size of the intervals)

a′′′ = a′′ + γ(b′′ − a′′) b′′′ = b′′ + γ(b′′ − a′′)
(left shift or rightshift)

This operator allows for refining, step by step, the over-
all spectral constraint discovered by the other operators for
a given class. The modified rules are all systematically
validated by thefusion process. In the presented system,
the probabilities assigned to each operator are dynamically
adapted, according to the standard deviation of the perfor-
mance measurement (fitness) observed on the whole pool of
individuals. If the standard deviation decreases, the popula-
tion becomes monotonous and there is a risk that an emerg-
ing individual, which may be a local minimal, may colonize
the remainder of the population. In this case, the rate of mu-
tation gradually went up (Pmut = Pmut +(1−Pmut)∗Tup,
it is an increasing function, limited by 1). Conversely, a
too high standard deviation means that the rate of muta-
tion is not low enough (within the meaning of the evo-
lutionist theory), and it is decreased with each iteration
(Pmut = Pmut−Pmut∗Tup, it is a strictly positive decreas-
ing function). During our experiments, the rate is stabilized
around 16% for an initialization at 30%.

The usefulness of the mutation operator is in the non-
linear traversing of the search space. Thus, a leftshift of
10% of the values of an interval is obtained with the same
effort (an operator callback) as the addition of an interval
in a particular disjunction, which can lead to a non-linear
modification of the space captured by the rules, but a con-
tinuous improvement of the recognition quality of the asso-



ciated rule.
The next section presents the calculation of the evalua-

tion function, based on thematchingvalues of each rule.

6 The genetic algorithm

The genetic algorithm used has the framework of the stan-
dards well known in the literature. The fitness function
is the standardized average of all the values obtained by
the evaluation function. This function defines the perfor-
mance of a particular individual compared to the remainder
of the population. In ICUX, an individualI is evaluated by
computing the correlation between the vector obtained by
M(I, P ) and corresponding expert information for a given
pixel, then by calculating the average for all the pixels avail-
able in the training set. The correlation is defined as the
square root mean of the squares of the distances between
the found proportions compared to the expert.

Many strategies of selection were tested and are avail-
able to the user (random selection, elitism, eugenism, based
on the rank, roulette wheel, tournament, ...). Most of the
genetic algorithms also define some other parameters, such
as the rate of crossover and of mutation, the number of in-
dividuals in the initial population, and the maximum itera-
tion number before stopping the algorithm (called number
of generations). Various values for the majority of these
parameters were tested (the average values taken in the ac-
ceptable intervals of parameters obtained by tuning on com-
pletely different data files were finally selected), those re-
tained for the case study are presented in the following sec-
tion.

7 Comparison of several methods

To evaluate the performance of the ICUX algorithm, it was
tested on three data sets, and compared with two other meth-
ods known to be robust. The first two data sets are two im-
ages of San Felice (Lagoon of Venice), with different reso-
lutions. CASI sensor (date 2002, 15 bands, 754x293 pixels,
resolution 1.3m2, 6 classes) and MIVIS sensor (date 2004,
20 bands, 396x170 pixels, resolution 2.6m2, 7 classes)
were used. In these data, the expertise of each class is ex-
pressed in percentages with an accuracy of 5%. The last
data set is a database of 846 samples of vehicles described
by 18 continuous spatial criteria (surface, perimeter, com-
pactness, elongation...) and is available on the UCI site [6].
This data set was used to compare the performances of the
various methods on a benchmark problem.

The results for the testing set (50% of all of the data)
are presented in the following tables. Accuracy is the mean
of the diagonal of the confusion matrix, PPA is thepositive
predicted accuracy(measures a reliability of correctly clas-
sified instances by a classifier to all instances associated by
a classifier to a given class) and SPE is thespecificity(mea-
sures the rate of correctly classified instances as not being
in a given class).

The parameters (described in this paper) for ICUX are
as follows: Pcross = 0.7, Pmut = 0.15, Pmut,cond = 0.3,

Accuracy PPA SPE
Neural network 0.997 0.981 0.931
SVM-R 0.974 0.737 0.499
ICU 0.889 0.867 0.797
ICUX 0.972 0.974 0.933

Figure 4: Results obtained for the CASI image.

Accuracy PPA SPE
Neural network 0.776 0.645 0.597
SVM-R 0.978 0.782 0.777
ICU 0.757 0.620 0.701
ICUX 0.863 0.855 0.765

Figure 5: Results obtained for the MIVIS image.

Accuracy PPA SPE
Neural network 0.722 0.682 0.704
SVM-R 0.898 0.869 0.869
ICU 0.537 0.546 0.531
ICUX 0.619 0.570 0.609

Figure 6: Results obtained for the vehicles database.

Pmut,int = 0.2, Pmut,term = 0.4, ε = 0.5, Tup = 0.1, ini-
tialization in 20 equal parts, 300 individuals, 2000 to 5000
generations and selection by rank for the crossover and the
mutation operators.

For the algorithm based on neural networks, a learning
rate of 0.1, 100000 iterations, 1 hidden layer of 7 to 15 neu-
rons, an incremental method for the learning, and a sym-
metrical sigmoid activation function were choosen. The exit
layers represent the expert continuous values and there are
as many exit neurons as there are classes to be learned. The
free library inC, named the Fast Artificial Neural Network
Library (FANN, [2]), was used. The chosen neural network
topology was simple but efficient (see Fig. 4).

For the algorithm based on Support Vector Machine
Regression (SVM-R), the RBF kernel was used; and the
parametersC andγ were discovered for each data set using
free software and a step by step optimization algorithm in
Pythonpresented on the site of the LIBSVM [7].

CommentsThe image of the MIVIS sensor was most
difficult to analyze for several reasons: some additional
bands; less pixels in the image, thus less samples to classify
(each time the whole training set consisted of less than 2%
of the image); the first bands of MIVIS are slightly more
disturbed than for CASI; and finally some classes of veg-
etation were no longer present on the saltmarsh in 2004,
which caused a drop in the quality of the training data. Also
noticed was a lower performance on the vehicle database
because the values of the data come grouped, without par-
ticular relation between them (that is due in particular to
the orientation of the various objects of the base). Also ob-
served was the increase in total performance of ICUX com-
pared to the previous version ICU and the comparable level
of performances between ICUX and the algorithm based on



neural network. Compared to SVM-R, the performances of
ICUX are variable according to the quality of the analyzed
image. When the values are gathered, a system based on
disjunctions proves to be more useful. Moreover, this kind
of classifier would make it possible to expose the contents
of the rules to a human expert contrary, for example, to a
neural network (often treated as ablack box).

8 Conclusion

In this paper, a new representation for a genetic individ-
ual able to deal with the unmixing problem without using
a subjacent linear model (LMM) has been proposed. This
representation has consequently required the redefinitionof
certain genetic operators. The creation process of the ini-
tial population of classifiers has been optimized by taking
into account, at the same time, the disjunctions of spectra
present in the data and continuous expertise. The system
benefited from the new operators and made it possible to
reach a better quality of recognition.

The representation of independent rules allows not only
the exploitation of mixed expert information but also of par-
tial information (attributes not well informed or absent).For
example, if the expert does not know the precise mixture of
a given pixel, but he is sure that there is not a given class, the
genetic algorithm can be asked to optimize the contribution
[0; 1]∧ [0; 1]∧ [0; 0] for this pixel, i.e. a contribution from 0
to 100% for the first two classes and a null contribution for
the last class. This kind of expertise will have to be studied
more deeply hereafter, because for the moment this expert
information still remains very rare (oral support).

This approach can be applied to other kinds of data pro-
vided in the format of tuples of attributes with values inR.
The usage of other data sets will allow us to specify the
influence of certain matching functions and to develop spe-
cific optimization functions tailored to a given problem.
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