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Abstract- The traditional classification algorithms for its simplicity, many problems have been encountered in this
multispectral images assign only one class to each pixel. approach, in particular, the fact that the models are net suf
However, such pixels are actually a mixture of the ficiently robust for separating BRDFs with acceptable pre-
spectral reflectance values of several different types of cision. Moreover, the choice of the pure pixels for training
ground, of which the various abundances characterize requires human intervention, which is not always free of er-
the final shape of the observed spectrum. Within the rors. Other models exist such as Probabilistic Models (Max-
framework of supervised learning, a representative so- imum Likelihood, neural networks) and Geometric Models
lution was defined to solve this kind of problem using a [10], which take into account the shape of the trees and the
genetic algorithm. This paper introduces a representa- direction and distribution of the illumination from the sun
tion of the selected and various associated genetic opera- but usually they are much more complex and relatively re-
tors (fitness crossover, mutation) used in remote sensing cent [14, 10].

image classification, as well, it describes a comparison  Conversely, unsupervised techniques have been pro-
of various representation using two more algorithms on posed, consisting of the identification of proportions di-

three data sets. rectly from the observed spectra, and some are based on
simplex [21, 20]. Moreover, more recent studies, using the
1 Introduction ICA algorithm, have modeled reflectances of the pixel for

each wavelength as independent processes [18]. But these

Exploitation of satellite images with high spatial and specmethods are very sensitive to noise; the displacement of
tral resolution leads to a double problem. The first questiosome boundary points can considerably modify the results
is how to deal with the treatment of the huge quantity of17].
available data (30 to 50 cm of spatial resolution on 10to 60 All these data constitute a significant problem with the
km?, which can represent several GB of data), while oftesearch space, in learning well as in exploitation. This pape
exploiting precise measurements by geographers, who gresents an evolutionary approach based on genetic algo-
cover and process the samples of ground truth data with théhms, known to be scalable [11]. Relatively simple rules
goal of training or validationdround truthing ? of classification are discovered which can be applied there-

In spite of the very low spatial resolution, in rural asafter to other remote sensing images. The structure of this
well as in urban areas, a pixel often contains various kindzaper is as follows: section 2 presents the ICUX algorithm
of vegetation in a symbiotic relationship, one in relation t in a general way, section 3 gives the appointed representa-
the other, and the resulting pixel is calledrixel Expert tion for the genetic individuals, and sections 4 to 6 report i
measurements are often very localized on the ground witetail the genetic operators used. In section 7, the predent
a resolution often lower than that of the image, but at thalgorithm is compared to two approaches, one based on a
same time, increasingly precise. Composition percentagesural network (Probabilistic Model) and the other on SVM.
of certain samples are known and can be used to detail thaese approaches were chosen because they are known for
contents of the pixels and to pass from the resolution prolheir robustness in this field [5, 8]. And finally the conclu-
lem of using standard classificatioang-to-one classifica- sion.
tion where a pixel is equivalent to a class) to @mmixing
problem pne-to-N classificationr subpixel classification 2 The ICUX algorithm
[9]), i.e. to consider the relative proportions of the vaso
components of the land cover types present in each pixel, he presented algorithm is based on a previous version
order to obtain an inverse Bidirectional Reflectance Districalled ICU [12, 1]. Very briefly, but we refer the reader to
bution Function (BRDF) model, which gives the reflectanceur previous publications, ICU is able to discover clasaific
of a target as a function of illumination geometry and viewtion rules based on conjunctions of disjunctions of spéctra
ing geometry, [4, 16]). intervals (see Fig. 1). The ICU rules are shorter than those

In the literature, the problem sfibpixel classificatiois ~ which are produced with ICUX (ICU Unmix), but they only
mainly solved by two methods: Spectral Mixture Analysiddeal with theone-to-one classificatioproblem. The inte-
and Fuzzy Classification [14]. For instance, in the Lineagration of the class proportions in ICU is only possible by
Mixture Model (LMM), an approach that was tried in manythe integration of the geographers domain knowledge for
early studies [13, 15, 19], the BRDF of a non-homogeneowalidating the increasingly vast and precise knowledge ac-
surface is expressed as the weighted sum of the BRDF qgfiired on the ground. This remains especially useful for
the homogeneous components of this surface [4]. In spite airal areas, in which the delimitation of the objects is ot a



contrasted as in urban cases, and for which an object omadel of concentration fixed by the expert. With condition
contextuabpproach is more suitable. components of the rules evolving in an independent way,
The search of a solution for thmmixingproblem begins it is possible for the classifier to return a null or a maxi-
at the definition then the adaptation to the subjacent pnoblemum concentration at the same time for all classes (if nec-
of a genetic classifier taking as a parameter the reflectanessary), or to discover classes which overlap partiallyer a
values of a pixel, and returning, for each learned class, tmot in the data (correlated attributes). The following &att
proportion of these classes in the pixel. The selected repngresents the techniques used for quantifyingrtiaching
sentation for this classifier allows the encoding, formbily of a rule and thus of a classifier for a given pixel.
constraints, of the range of acceptable values of the spec-
trum for each class. These constraints are in fact conjung:2 To match a rule
tions of disjunctions of intervals, and could be viewed as i i ) i
hyper-rectangles in the space of data. Thus learned knov;}_lhe matchmgft_mcnon/\/l(@, P) = r is defined for each
edge could easily be representable for the purpose of prré'-leR composing a classifier and returns a real between 0

sentation and validation by a human expert. The presenceéfﬂd 1 gorrequndmg to the proportiorof pure class con-
tained in the pixelP = [po,...,pi,...,ps] (nis the num-

disjunctions in the constraints makes it possible to saive ib t bands). Th cati o classif el
certain cases some non-linear problems. Finally, thess rul er of bands). The application of a classifier on a pixel con-

are evolved directly from the data, without requiring pre—SiStS,in applyi_ng the varipus rules cqntained in this cfeessi
liminary preprocessing of the whole of the image, therefor@nd n collecting the various proportlons for each class. Fo
this can represent a fast manner for classifying new imageach interval; = [a;;bi] (0 < i < n) of rule R, the func-
provided that the learned rules are sufficiently robust. tion M(R, P) calls upon a func_:tlom/l({’i,pi), .Wh'Ch can

be whatever, but which takes its maximum in the interval
[a;; b;]. At the time of a disjunction of intervals, the largest

3 Genetic individuals value of M is retained.

3.1 Representation of a classifier

A classifier (agenetic individuglis composed of as many Match(,P)

rules as there are classes to learn. Thus the adaptation of 1

the classifier is done in parallel for all the classes. Eatzh ru

contains as many conditiors; as there are bands in the 05

image or exogenic attributes for each sample of data (see

figure 1). -3} —» Bandvalue

Cowo??{ule Rule Rule; :if P € (aVb)Ac
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then prop. of classK»
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Figure 2: Representation of a satisfactorgtchingrunction
M(I;, p;) for an intervalla; b and a given band value.

The function, which was retained in experimentation, is
presented on the figure 2. The function is defined in the
Figure 1: Genotypic and semantic representation of a gépllowing way:
netic individual.

Individuall | ......

1 if Pi € [a,-; bt]
The conditions are linked together by conjunctions, for M(I;,pi) = ’é% if p; <a;
instance(a V b) A ¢. Each condition contains a variable 2;3 if p; > b

number of intervals, for which the domain of value and type

(float, integer, boolean) depend on the data. The intervald1erep; is the value of the pixef for the band and|a;; bi]

are linked together by disjunctions. Thus each rule repréde values of the corresponding interval defined in the ge-
sents a constraint as a hyper-rectangle for a given class."&tic individual. M is worth 1 for a perfecmatchingand
data is said to be ingerfect matchinif all the values re- tends towards O if not.

spect the conjunction of disjunctions of intervals for asgiv 1 is function is only dependent on the size of the inter-
class and is apart from the intervals for the other classeélS. therefore independent of the scale of the data. The
For instance, if there are 5 classes to learpedect match- 9enetic algorithm will have to adapt the position and the
ing for class 2 could be represented by the ve@ap00]. — Size of the intervals dlrgctly accordlng.to the gnalyzed:spe
To make it possible for the classifiers to report various corffal context. The function is constant in the interirat b;]
centrations of pure classes in the form of continuous pef® as not to influence the performance of the rules if the
centages, a calculation of correlation is carried out whengistribution of the spectrum is not homogeneous (checked
datum does not respect the intervals of a given rule. THSSumption). Other functions (Gaussian, ...) are beird stu
goal of the genetic algorithm is to adapt the size and posid-

tion of these hyper-rectangles so that they conform to the



Thematchingfunction for a whole ruleR takes into ac- tribution 4 (7, j, DI) from all the instances of pixels which
count the score obtained for each band and is defined in theatch DI and the average contributigm (¢, j, DI) from

following way: all the instances of pixels whictlo not matchDI can be
calculated.
M(R,P) = | S ML, pi)e The algorithm then sets an iteration step on the interval
’ n [MIN; M AX] of the observed values of the pixels for a

wheren is the number of bands ands a strictly positive given band, and examines in an exhaustive manner the set
parameter controlling the influence of the extreme valugd disjunctions that it is possible to build. For instande, i
(for instanceg = —2 corresponds to a distance within thefor a bandj the values of the pixels of the image are dis-
context of the LMS error estimation). tributed in the interval [1;12000] and a step is chosen to cut
The matching of a pixeP with the totality of the clas- OUtthe search space in 2 equal parts, disjunctions 00", ‘01
sifier I is defined as being the standardized vector of th¢0" and "11’will be ,succ_ess,Ner exam!nfad, .€. respec-
scores obtained for each rule of the classifier. Each corfively disjunctions: 9 (void), * [501; 1000, ' [1;500]" and
ponent of the vector indicates the proportion of the corre{1; 500] V [501; 1000]" (which is reduced irf1; 1000] after

sponding class in the pixé?. the application of the fusion process, see the section 3.3).
For each one of these disjunctions, the contributipfrom
_ (_M(Rs,P M(Ry,, P M(R,, P the valuesn these intervals and th obtainedapart
M1, P) = (5t 2y sty ) a%d) b

from these intervals. The algorithm no longer has to select
which disjunction induces the maximum variation of contri-
butione = ;1 — ug, which makes it possible to be sure that
When the rules are created or modified (by the crossover thre contribution of a given band for a given class is maximal
the mutation operators), it is possible that the interveds ain the disjunction and minimal outside.
not coherent any more. A random modification of one of A classifier called "initial seed’ is built by accumulating
the terminals or a more significant part of the rule can leatewarded disjunctions for each band and each class, accord-
to: ing to the above representation. The initial pool is then ob-
e aterminal MIN higher than a terminal MAX, tained by duplicating this seed and by adding slight noise as

e a negative terminal value or higher than the accepmaTn?]/ times ai 'Fgetr_e are mdgndualzm f[he |r;;;c|al [I)opulatl(;) th
able range for the values of the pixels, ese contributions are dependent on the class and the

. o . analyzed band. The final rule (for a given class) consists of a
e auto-intersecting intervals (for instance, [25,105] oo niynction of disjunctions obtained for each band to be an-
[80;112] can be merged in [25;112] and [12;18] 4y 7ed. In practice, the exhaustive examination of a search
[14:18] can be merged in [12;18]). space cut out in 20 equal parts (see figure 3) reqefife
ICUX contains a procedure for checking that such casgg million) iterations, which represents a computing tinfie o
do not occur, and correcting them if necessary by a fusiqgss than one second on a recent machine. Moreover, only

3.3 Verification of the conditions

or an inversion of the terminalfusion process half of the iterations are really carried out, because by per
muting po and 1, the contribution of complementary dis-
4 Initial population junctions can be deduced (thus disjunction '10’ substitute

the disjunction '01’, for instance). The maximum number
To avoid a significant problem with the search space (withigf intervals of a disjunction is limited by cutting the searc
the framework of remote sensing images) and to optimizghace (10 per 20 parts, because the contiguous intervals are
the usually long processing time of the genetic algorithmsperged).
a procedure of initialization of an individual adapted te th One of the interesting characteristics of this a|gorithm
image and the expertise providedikel§ has been set up. is the fact that it can produce a variable numbehofes
In particular, the number of disjunctions of intervals for(within the meaning of the number of intervals in a disjunc-
each band and each class are estimated by taking into &gn), by taking into account, at the same time, the data (all
count, at the same time, the image and the expertise.  pands) and the continuous values of the expertise.

Letn be the number of pure classes andhe number  However, in spite of the quality of the initialization, re-
of bands in the image or attributes in the data to be angining via the genetic algorithm is necessary for a couple of
lyzed. For each pixeP ther is a corresponding expertisereasons: firstly, because of the partiality introduced ey th
c1,...,¢p, € Rforeach pure clasky, ..., K,. The value yser-fixed value for the iteration step and then because of
of the expertise; of this pixel for a pure clas#; is seen the non-homogeneous distribution of the values of the at-
as the contribution of the valyg of the bandj of the pixel  tributes within the problem space. The following section
P for this classK;. Itis expressed byi(p;,j) = c,. FOr  presents the genetic operators which have been studied for
instance, for a pixeP = [1000; 1500; 1300] and an exper- refining the value of the terminals of the intervals apantrfro
tiseC = [0.7;0.1;0.05;0.03; 0.12], it is considered that the the rigid framework fixed by the iteration step, by cutting
contribution of the value 1000’ for the first band and thethem out if the selected resolution for the step is not high
first class is 70%. enough_

If a classK; - a bandj and a disjunction of intervals
DI = [a1;01] V ... V [am; b)) - is set, the average con-



Band | Disjonction H1 Ho rification ( if the algorithm considers this band as distarbe
b=0 |[............ X, ] | 0.0677 | 0.0000 or embracing poor information). The existence of this noisy
b=1 |[............ X, ] | 0.0619 | 0.0000 band in the image disturbs the process of training as well as
b=2 |[............. X 1 | 0.0507 | 0.0000 the convergence of the algorithm.

b=3 |[.............. X ] | 0.0547 | 0.0000 The second type of mutation consists of selecting an in-
b=4 |[............... X....1 | 0.0700| 0.0000 terval, with a probabilityP,,,,: in¢, in one of the conditions
b=5 |[............. X.XX...] | 0.0868| 0.0000 C, then eliminating it, cutting it into two, replacing it if
b=6 |[............... Xxx..] | 0.0951| 0.0000 the number of authorized intervals for this particular rule
b=7 |[............... xxxx.] | 0.0996 | 0.0000 have been reached, or adding an intervaCin The cut-
b=8 |[.............. xxxxx.] | 0.1650 | 0.0963 ting of an interval consists of randomly selecting a point
b=9 |[.............. xxxxx.] | 0.0951 | 0.0000 of cut and then separating the parts if their size is suffi-
b=10 | [.............. Xxxxx.] | 0.0949 | 0.0000 ciently broad (for instancd]0; 100] is cut out in two non-
b=11([.............. 0. ]| 0.0939 | 0.0000 consecutive intervald 0; 15] A [17;100] but [1; 3] is cut out
b=12|[............. X0, ]| 0.0939 | 0.0000 in [1;2] A [2;3]). This is useful to explore the continuous
b=13 | [........o xxx.] | 0.2200 | 0.0633 values of the spectrum below the resolution of the iteration
b=14 | (................... x| | 0.3300| 0.0382 step of the initialization operator.

b=15|[.......... P S 1 | 0.3300| 0.0581 Lastly, the mutation of the terminals of an interval with a
b=16|[.......... XX 1 | 0.0563| 0.0100 probability P, .t term modify the two terminals by shifting,
b=17|1(......... XX ] | 0.0504 | 0.0000 widening, or modifying only one of the two terminals in the
b=18|(........... Xoooiinn, ] | 0.0479 | 0.0000 following way. Letw; andws be two real random variables
b=19 | [......... X 1 | 0.0502 | 0.0000 in the interval[0; 1], « the quantity of added noisé, the

increase in the size of the intervals, anthe displacement

Figure 3: Example of the disjunctions found for claSpar-  of the intervals. An intervala; b is modified randomly in
tima on a remote sensing image of 20 bands. The 'X’ rePia/; b as follows.

resents the intervals selected in the disjunction. The-spec
trum of the class start appearing vertically. Note the small; — (b —a) o/ = (a — 1) + 2wl ¥ = (b—1) + 2wsl
spectrumholefor bands 5 and 17. (adding noise)

@ = @) B =)y (@) | B —a))

5 The crossover and the mutation operators (centered-%/videning 02r -reduction of t2he size of?[he intexva
a/// — a// + ,y(b// _ a//) b/// — b// + ,y(b// _ a//)

The crossover operatorfunctions via the exchange of the gleft shiftor rightshif)

genetic material between the two parents. If the two parents

are better than the average, the assumption is made that therp;g operator allows for refining, step by step, the over-

resulting genetic material will contain a copy of the powery| spectral constraint discovered by the other operatars f

ful genes and will be transmitted to the children. Thus itg, given class. The modified rules are all systematically

role is to exploit the knowledge acquired by the individualg 5 jigated by thefusion process In the presented system,

of the current population. _ _ the probabilities assigned to each operator are dynamicall
InICUX, the crossover is uniform. A clags is selected  5gapted, according to the standard deviation of the perfor-

randomly, as well as the respective rulesx andRs x i ance measuremeriithiess observed on the whole pool of

the two individuals to be crossed. For each bayiiie con-  ingividuals. If the standard deviation decreases, the jepu

dition C'y k. ; of Rk, as well as the conditiol’s, rc,; of  {jon hecomes monotonous and there is a risk that an emerg-

Ry, have a probability®...,,, for being crossed. When the jq individual, which may be a local minimal, may colonize

crossover operator is selected, an interval is selected rafje remainder of the population. In this case, the rate of mu-
domly in each condition and it is exchanged. Then,fthe (54i0n gradually went UpRur = Pt + (1= Pt ) * Tups
sion processs applied to the modified rules. itis an increasing function, limited by 1). Conversely, a
The mutation operator causes a small number (giventog high standard deviation means that the rate of muta-
by a probabilityF;;,..:) of minor and random modifications tjon is not low enough (within the meaning of the evo-
within genes of an individual. On the basis of the assumgionist theory), and it is decreased with each iteration
tion that a limited number of mutations makes it possible t?Pmut = Pyt — Prut Ty, it is a strictly positive decreas-

reach any point of the search space, the mutation operajgp function). During our experiments, the rate is stabiliz
is seen as an exploratory operator. It is also used for maigrqund 16% for an initialization at 30%.

taining diversity in the population of individuals. Heri  The ysefulness of the mutation operator is in the non-
operator is applied to three levels: a whole condition, afear traversing of the search space. Thus, adbift of
interval, or one of the terminals of an interval. 10% of the values of an interval is obtained with the same

The mutation of a whole condition consists of removingetfort (an operator callback) as the addition of an interval
for a given rule, the condition corresponding to one of thg, 3 particular disjunction, which can lead to a non-linear
bands with a probability>y.s,cond- Several interests are: mqgification of the space captured by the rules, but a con-
the simplification of the rule, the generalization, and the p {jnyous improvement of the recognition quality of the asso-



ciated rule. Accuracy | PPA | SPE
The next section presents the calculation of the evalua- Neural network| 0.997 0.981| 0.931
tion function, based on thmatchingvalues of each rule. SVM-R 0.974 0.737| 0.499
ICU 0.889 0.867| 0.797
6 The genetic algorithm ICUX 0.972 0.974| 0.933

The genetic algorithm used has the framework of the stan-
dards well known in the literature. The fithess function

Figure 4: Results obtained for the CASI image.

is the standardized average of all the values obtained by Accuracy | PPA | SPE

the evaluation function. This function defines the perfor- Neural network| 0.776 0.645| 0.597
mance of a particular individual compared to the remainder | SYM-R 0.978 0.782)| 0.777
of the population. In ICUX, an individual is evaluated by ICU 0.757 0.620| 0.701
computing the correlation between the vector obtained by ICUX 0.863 0.855] 0.765

M(I, P) and corresponding expert information for a given
pixel, then by calculating the average for all the pixelslava
able in the training set. The correlation is defined as the

Figure 5: Results obtained for the MIVIS image.

square root mean of the squares of the distances between Accuracy| PPA | SPE
the found proportions compared to the expert. Neural network| 0.722 0.682] 0.704
Many strategies of selection were tested and are avail- SVM-R 0.898 0.869 0.869
able to the user (random selection, elitism, eugenismtbase ICU 0.537 0.546 | 0.531
on the rank, roulette wheel, tournament, ...). Most of the ICUX 0.619 0.570] 0.609

genetic algorithms also define some other parameters, such
as the rate of crossover and of mutation, the number of in-
dividuals in the initial population, and the maximum itera-
tion number before stopping the algorithm (called numbepmut_’mt = 0.2, Pout.term = 0.4,¢ = 0.5, T, = 0.1, ini-

of generationp Various values for the majority of these tja|ization in 20 equal parts, 300 individuals, 2000 to 5000
parameters were tested (the average values taken in the génerations and selection by rank for the crossover and the
ceptable intervals of parameters obtained by tuning on corytation operators.
pletely different data files were f|na”y Selected), those re For the a|gorithm based on neural networksl a |earning
tained for the case study are presented in the following segte of 0.1, 100000 iterations, 1 hidden layer of 7 to 15 neu-
tion. rons, an incremental method for the learning, and a sym-
metrical sigmoid activation function were choosen. The exi
layers represent the expert continuous values and there are
as many exit neurons as there are classes to be learned. The
To evaluate the performance of the ICUX algorithm, it wasree library inC, named the Fast Artificial Neural Network
tested on three data sets, and compared with two other methbrary (FANN, [2]), was used. The chosen neural network
ods known to be robust. The first two data sets are two iMopology was simple but efficient (see Fig. 4).
ages of San Felice (Lagoon of Venice), with different reso- For the a|gorithm based on Support Vector Machine
lutions. CASI sensor (date 2002, 15 bands, 754x293 piXE|Regressi0n (SVM_R), the RBF kernel was used; and the
resolution 1.3n?, 6 classes) and MIVIS sensor (date 2004parameters’ and~ were discovered for each data set using
20 bands, 396x170 pixels, resolution 1%, 7 classes) free software and a step by step optimization algorithm in
were used. In these data, the expertise of each class is @thonpresented on the site of the LIBSVM [7].
pressed in percentages with an accuracy of 5%. The last
data set is a database of 846 Samples of vehicles deSCI’ibed:omments The image of the MIVIS sensor was most
by 18 continuous spatial criteria (surface, perimeter, comyifficult to analyze for several reasons: some additional
pactness, elongation...) and is available on the UCI sjte [6hands; less pixels in the image, thus less samples to glassif
This data set was used to compare the performances of fggch time the whole training set consisted of less than 2%
various methods on a benchmark problem. of the image); the first bands of MIVIS are slightly more
The results for the testing set (50% of all of the datajisturbed than for CASI; and finally some classes of veg-
are presented in the following tables. Accuracy is the meagtation were no longer present on the saltmarsh in 2004,
of the diagonal of the confusion matrix, PPA is thesitive  which caused a drop in the quality of the training data. Also
predicted accuracymeasures a reliability of correctly clas- noticed was a lower performance on the vehicle database
sified instances by a classifier to all instances associgted Because the values of the data come grouped, without par-
a classifier to a given class) and SPE isshecificitymea-  ticular relation between them (that is due in particular to
sures the rate of correctly classified instances as not belﬂ% orientation of the various objects of the base)_ Also ob-
in a given class). served was the increase in total performance of ICUX com-
The parameters (described in this paper) for ICUX argared to the previous version ICU and the comparable level
as follows: Peross = 0.7, Pyt = 0.15, Pruut,cona = 0.3, of performances between ICUX and the algorithm based on

Figure 6: Results obtained for the vehicles database.

7 Comparison of several methods



neural network. Compared to SVM-R, the performances of  the Fifth Framework Programme, contract BVK3-
ICUX are variable according to the quality of the analyzed CT-2001-00064, http://www.istitutoveneto.it/tide,
image. When the values are gathered, a system based on 2001-2005.

disjunctions proves to be more useful. Moreover, this kind
of classifier would make it possible to expose the content44]
of the rules to a human expert contrary, for example, to a
neural network (often treated abkack boy.
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