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Abstract— The classification methods applied in the object-
oriented image analysis approach are often based on the use of 
domain knowledge. A key issue in this approach is the acquisition 
of this knowledge which is generally implicit and not formalized. 
In this paper, we examine the possibilities of using genetic 
programming for the automatic extraction of classification rules 
from urban remotely sensed data. The method proposed is 
composed of several steps: segmentation, feature extraction, 
selection of training sets, acquisition of rules, classification. 
Features related to the spectral, spatial and contextual properties 
of the objects are used in the classification procedure. 
Experiments are made on a Quickbird MS image. The quality of 
the results shows the effectiveness of the proposed genetic 
classifier in the object-oriented, knowledge-based approach. 

Keywords-genetic classifier, knowledge-based classification 
method, object-oriented approach. 

I.  INTRODUCTION 
Since the appearance of the very high resolution sensors 

and the object-oriented image analysis (OOIA), new questions 
about the acquisition of knowledge for classification 
procedures are posed. The OOIA approach is characterised by 
the extraction of object primitives from images where each 
object corresponds to a group of homogeneous pixels. The 
object recognition methods are generally based on the use of 
knowledge related to spectral, spatial and contextual properties 
(e.g. mean of spectral and textural values, shape, length, area, 
adjacency and inclusion relationships…). 

While there are several studies that compare object-oriented 
and pixel-based classification techniques [1,2], only few works 
focus on the development of the knowledge base used to 
recognize the objects [3]. However, this is an important issue in 
the OOIA approach since the information required is generally 
not formalized. No urban objects dictionary or ontology exists 
to create the knowledge base. Most of the time, the knowledge 
is implicit and is held only by the domain experts.      

Building a knowledge base in this context is not a trivial 
task. Previous works in the knowledge acquisition field have 
already proved that it is still difficult to grasp knowledge 
directly from the experts, by means of elicitation techniques 
(i.e. interviews, observations…) [4]. The experts are rarely able 

to supply an explicit description of the knowledge they use in 
their reasoning. This is the well-known problem of the 
knowledge acquisition bottleneck [5].  

The aim of this study is to examine how data mining 
techniques and in particular, a genetic programming method, 
can help to derive this knowledge and to extract classification 
rules automatically. These rules are intended to enrich an 
ontology in the urban remote sensing imagery domain.     

The paper is organized as follows. In section II, we briefly 
present the principles of the genetic programming and the 
algorithm we used to make this study. The methodology and 
the experiments are detailed in section III. We discuss the 
results and give concluding remarks in section IV.     

II. GENETIC PROGRAMMING 
Genetic Programming (GP) is a supervised machine 

learning technique introduced by Koza in 1992 [6]. It has been 
applied in a variety of application domains, including image-
processing problems. In the field of remote sensing, some 
works have already demonstrated that this evolution-based 
process could be useful in particular, to detect and eliminate 
noisy spectral bands (for hyperspectral images), and to produce 
comprehensible classification rules [7,8,9,10]. GP can provide 
relevant and robust rules in terms of classification accuracy. 
The rules are generally represented in a symbolic language. 
Thus, they are easily comprehensible and can be revised if 
necessary by human experts. GP can also be employed in case 
of incomplete or missing data, without dramatically decreasing 
the quality of the solution. 

A GP algorithm is based on an evolutionary approach. The 
process starts with a set of randomly created potential solutions 
(the individuals) generated in parallel from a training set given 
by an expert. Each individual is a classification rule which can 
be represented in the form of a tree (chromosome). All the 
individuals constitute the population which evolves during 
several generations, until some stopping conditions are 
satisfied. At each generation, evolution operators are applied to 
the population to reach the desired solution in an iterative way. 

We have developed a high-flexible GP algorithm adapted to 
remote sensing images, called ProgGen [11]. The working of 



our algorithm is as follows. First, a set of individuals is created   
from the learning data, i.e. from the raw and expert samples 
(initialisation step). Then, the individuals are randomly 
perturbed to fill in a homogeneous way the search space. 
Several generational loops are developed until a stopping 
criterion is triggered. At each generation, a selection operator 
imitating the natural selection selects individuals for crossover 
and mutation. Crossover requires two classifiers and cuts their 
chromosome at some randomly chosen positions to produce 
two offsprings. After the reproduction, the two new classifiers 
inherit some rule conditions (e.g. parts of the tree) from each 
parent-classifier. A crossover operator is used in order to 
exploit the qualities of already generated classifiers. The 
mutation operator plays a dual role in the system: it provides 
and maintains diversity in a population of classifiers, and it can 
work as a search operator in its own right. The mutation 
processes a single classification rule and it creates another rule 
with altered condition structure or variables.  

Each offspring produced by the evolution operators has to be 
assessed according to the learning data. The evaluation function 
(fitness function) serves to differentiate the quality of generated 
rules and guide the genetic evolution. Usually, this function 
depends strongly on the application domain. In our case, fitness 
measure is based on the simplicity of the trees (e.g. number of tree 
nodes) and the accuracy computed from the confusion matrix 
using the learning samples. The individuals are then ranked by 
their performance, some of them replace the worst individuals 
from the previous generation (replacement step), and a new 
generation is done until the program finish.  

Each rule is described in the form if <condition> then <class>. 
A condition takes several variables (data attributes), random 
constants, and returns a true or false value. In our case study, we 
have used two kinds of conditions. The first one is based on 
conjunctions of disjunctions of real-values intervals [9]. The 
second one is based on symbolic regression [11]. In symbolic 
regression, the condition is an equation containing simple 
operands like +, -, *, /. If the equation returns a strictly positive 
value, the condition is defined as true (false otherwise).  

We have developed a rule for each class (this is called soft 
learning). First, this leads to independent rules that could be 
combined at different hierarchical level. Second, several rules can 
be activated, describing several classes included in low-resolution 
areas. 

The ProgGen algorithm is included in highly portable 
libraries set named VPlat and compiles on various platforms 
(Windows/Linux/Unix). These libraries are written in C for 
faster treatments and more extensible capabilities. VPlat can be 
obtained at the following URL address: [12]. 

III. METHODOLOGY AND EXPERIMENTS 
We tested the ProgGen algorithm on a very high resolution 

(VHR) Quickbird MS image. The area examined is located in 
the urban area of Strasbourg (France) and has an extent of 
42km². The image was collected on May 2002. 

A class hierarchy of elementary urban objects composed of 
three levels has been defined for the experiments. This 
hierarchy is illustrated in figure 2. 

  

 

 

 

 

 

 

 

    
Figure 1.  The object classes hierarchy. 

A. Segmentation 
The VHR-image was segmented to group pixels 

automatically into homogeneous regions that correspond to 
geographical objects. The region growing approach proposed 
by the eCognition software (Definiens-Imaging) was used for 
this task. The parameters of the algorithm were empirically 
chosen. 

The segmentation procedure was applied on the four bands 
of the image and was supported by a thematic layer. This layer 
contained buildings coming from a 1m resolution vector 
database (the BDTOPO from IGN). The introduction of this 
ancillary data was motivated by the fact that we wanted to 
discover a set of reusable classification rules based on spectral 
properties, but also on spatial characteristics. Consequently, it 
was important to obtain regions with representative shape and 
dimensions. By introducing this thematic layer, some regions 
resulting of the segmentation were identical to the polygons of 
the building theme (fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  Object extraction supported by a thematic layer. 

B. Feature extraction 
Each region was characterized by a set a features. For the 

first two levels of the class hierarchy, we used only the spectral 
information. We made the assumption that the spectral 
signatures are sufficient to separate these basic land cover 
classes. The features retained were as follows: the mean of the 
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spectral values of the regions for each band of the image (blue, 
green, red, near infrared), the brightness (sum of the mean 
reflectance values in all bands), and the mean of the values of 
two index (NDVI and SBI).       

For the third level of the class hierarchy, the regions were 
described with additional information. Confusions can occur 
between the building classes using the spectral properties of the 
regions only. Spatial and contextual properties are more 
relevant to identify the functional character of the buildings. 
Thus, several shape properties of the regions were computed: 
area, perimeter, diameter (length of the major axis), 
compactness (Miller’s Index), solidity (ratio of the area to the 
convex area). The percentage of vegetation around the 
buildings within a buffer of 20m radius was also determined. 
All these features were used during the rules acquisition and 
classification processes.          

C. Selection of training data set and acquisition of rules 
In order to train the genetic classifier, 50 regions of each 

class were collected and labelled on the basis of expert 
knowledge. A random sampling method was used to obtain 
these regions. In this way, a training data set was provided with 
a representative description of each class.   

The genetic classifier was applied on this training set but 
the classification procedure was made in several steps, in an 
iterative way. We did not learn the classification rules enabling 
to discriminate all the classes directly. We rather followed a 
deductive approach by trying to distinguish successively the 
objects of one class from all others, starting with the objects 
easiest to identify. First, we learned rules enabling to recognize 
the objects ‘water’. Thus, the training set was subdivided into 
two subsets: one containing the samples classified as ‘water’ 
and the others reclassified as ‘non water’. Then, the set of 
objects ‘non water’ were subdivided into ‘vegetation’ and ‘non 
vegetation’. These last ones were thereafter selected to 
distinguish successively the classes ‘shadow’, ‘bare soil’ and 
‘mineral’. Finally, this process was continued to discover rules 
relating to the object classes of levels 2. The learning procedure 
was therefore split into several steps. In practice, it gives more 
accurate results since the hypothesis space of the classifier is 
reduced. After these experiments, another independent test was 
performed to learn the classification rules relating to the 
building theme (classes at level 3).  

The set of rules provided by the genetic classifier ProgGen 
is given below. Let us notice that all the features used have 
values ranging between 0 and 1. The features have been 
normalized during the learning process. For the following case 
studies, we used 200 individuals, 500 generations, a crossover rate 
of 75% and a mutation rate of 15% (parameters of the algorithm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. Classification and results 
The relevance of the learned rules has been verified by 

introducing them in the eCognition software and by applying 
them on the study area. An excerpt of the classification of the 
image is illustrated in figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.  Classification of level 1 and 2. 

 
Rule 1:  
  
If mean_IBS < 0.9 
And mean_NDVI < 0.14 
Then class = water 
Else class = non water 

   
  

Rule 2: 
  
If mean_IBS < 0.86 
And 0.68 < mean_NDVI < 0.99 
And mean_brightness < 0.96 
Then class = vegetation 
Else class = non vegetation  

 
Class Hierarchy – Level 1: 

Rule 9: 
  
If perimeter < 0.61 
And 0.65 < compactness < 1 
And diameter < 0.08 
Then class = residential B. 
  

   
    

 
Rule 10: 
  
If area < 0.05 
And 0.05 < perimeter < 0.98 
And compactness < 0.96 
And 0.02 < %_of_V < 0.91 
And 0.05 < diameter < 1 
Then class = collective  

 

Rule 11: 
  
If 0.1 < area < 1 
And perimeter > 0.84 
And 0.3 < compactness < 1 
And %_of_V < 0.95 
And 0.13 < solidity < 1 
And 0.33 < diameter < 1   
Then class = activity 

 
Rule 12: 
  
If 0.05 < area < 0.77 
And 0.02 < perimeter < 1 
And compactness < 0.46 
And %_of_V < 0.25 
And solidity < 0.97 
And 0.01 < diameter < 0.91   
Then class = continuous 

Class Hierarchy – Level 3: 
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Building Shadow 

Quickbird MS image Classification 

Rule 3: 
  
If 0 < mean_B1 < 0.8 
And 0.04 < mean_B3 < 0.05 
And 0 <mean_IBS < 0.04 
And 0.02 < mean_NDVI < 0.9 
And 0.01 < mean_brightness < 0.96 
Then class = shadow 
Else class = non shadow  

 
Rule 4: 
  
If mean_B1 < 0.38 
And mean_IBS < 0.93 
And 0.3 < mean_NDVI < 0.98 
Then class = bare soil 
Else class = mineral  

Rule 5: 
  
If 0.07 < mean_B4 < 1 
And 0.06 < mean_NDVI < 0.4 
And 0.07 < mean_brightness > 0.4 
Then class = building 

   
    

 
Rule 6: 
  
If 0.15 < mean_B1 < 0.5 
And 0.03 < mean_B2 < 0.97 
And 0.25 < mean_B3 < 1 
And 0.22 < mean_B4 < 0.98 
And mean_IBS < 0.86 
And 0.18 < mean_NDVI < 0.26 
And 0.04 < brightness < 0.82 
Then class = road  

 

Class Hierarchy – Level 2: 

Rule 7: 
  
If 0.02 < mean_B4 < 0.93 
And 0.02 < mean_IBS < 0.69 
And mean_NDVI < 0.97 
Then class = tree 

 
    

 
Rule 8: 
  
If mean_B1 > 0.1 
And mean_B2 > 0.1 
And mean_B3 > 0.28 
And mean_IBS > 0.08 
And mean_NDVI > 0.09 
And mean_brightness > 0.57 
Then class = grass 

   



The accuracy assessment was accomplished with confusion 
matrices. These matrices have been computed using 50 new 
test areas derived by visual interpretation. Table 1 shows the 
results. 

TABLE I.  CLASSIFICATION ACCURACY ASSESSEMENT (PA = 
PRODUCER’S ACCURACY; UA = USERS’S ACCURACY ; OA = OVERALL 

ACCURACY) 

Classes  
(L1 - L2) PA UA Classes  

(L3) PA UA 

Water 0.66% 100% Residential 0.90% 100% 
Grass 0.96% 0.89% Activity 0.96% 0.75% 
Tree 0.86% 0.95% Collective 0.62% 0.83% 

Shadow 0.9% 100% Continuous 0.88% 0.93% 
Bare soil 0.58% 0.80%    
Building 0.92% 0.35%    

Road -- 0.00%    
 OA: O.69%  OA: 0.86% 
 Kappa: 0.64%  Kappa: 0.77% 

 

Concerning the classes of the first two levels (L1-L2), 
several important confusions occur. Some water objects are 
classified as building objects. This is the case when the water is 
covered with fog. These errors are relatively frequent but well-
localized. All the roads are also confused in buildings. These 
errors are more problematic and could be due to the both fact 
that we had less road samples than buildings (50 vs. 150) and 
that a low number of attributes can be used to discriminate each 
classes (for instance, C4.5, a well known classification 
algorithm [13] uses only the SBI index and the first band, 
whereas we try to use all the attributes together). Thus, the 
learned rule should be revised. Finally, many bare soils are also 
classified as buildings. This could be explained by the 
overlapping existing between the spectral ranges. 

Results are better for classes at level 3 (the buildings). The 
accuracy values indicate that the classes are well-discriminated, 
except for collective buildings. The features used to describe 
the building objects seem to be adapted.   

IV. CONCLUSION 
The knowledge acquisition step in the recent OOIA 

approach is an important issue which has been often neglected. 
In this paper, we have investigated the possibilities of acquiring 
classification rules automatically with ProgGen, a new genetic 
programming method adapted to remote sensing imagery. The 
results obtained show that ProgGen is a viable approach. 
However, additional experiments should be made to decrease 
several confusions between the classes (in particular, 
concerning the buildings and roads). The spectral signatures are 
probably not sufficient to separate the basic land cover classes 
selected. Additional features related to spatial and contextual 
properties should help to improve the classification rules. The 
tests we made to discriminate the different kinds of buildings in 
this way show better classification accuracy.   
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