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Abstract— Fuzzy rule-based classification systems (FRBCSs)
are able to design interpretable classifiers but suffer from the
curse of dimensionality when dealing with complex problems
with a large number of features. In this contribution we explore
the use of popular approaches for designing ensembles of
classifiers in the machine learning field, bagging and random
subspace, to design FRBCS multiclassifiers from a basic, heuris-
tic fuzzy classification rule generation method, aiming to both
improve their accuracy and to make them able to deal with high
dimensional classification problems. Besides, a multicriteria
genetic algorithm is proposed to select the component classifiers
in the ensemble guided by the cumulative likelihood in order
to look for an appropriate accuracy-complexity trade-off.

I. INTRODUCTION
It is well known that fuzzy rule-based classification sys-

tems (FRBCSs) have the key advantage of their compre-
hensibility for human beings but suffer from the curse of
dimensionality [1]. Apart from fuzzy rule selection/reduction
methods, the most common solution is to consider a feature
selection mechanism [2], either before the fuzzy system
derivation or embedded in its design method.

In particular, there are different approaches based on the
use of evolutionary algorithms (EAs) to put that into effect
[3]. The flexibility provided by EAs to encode different
structures to be learnt has made genetic fuzzy systems (GFSs)
become one of the most successful approaches to hybridize
fuzzy systems with learning and adaptation methods in the
last fifteen years [4], being somehow able to deal with the
resulting fuzzy system design interpretability-accuracy trade-
off problem in a proper way [5]. Unfortunately, their role of
fuzzy system identification methods make them inherit the
same scalability problems and the design of GFSs capable
of dealing with high dimensional problems with a large
number of features and/or examples is still an open issue
(and consequently a hot topic) [6].

On the other hand, in the last two decades there is an
increasing interest on generating ensembles of classifiers in
the machine learning community with the aim of improving
the accuracy of a single classifier when solving a problem
[7]. Boosting [8] and bagging [9] are the two most popular
generic approaches to do so, as well as there are some other
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more recent proposals considering other ways to promote
disagreement between the component classifiers, with feature
selection being an extended strategy [10].

Up to now, boosting of fuzzy classifiers/rules has been
already considered in some works (see Sec. II-B). However,
the use of bagging is quite reduced and, up to our knowledge,
no proposal has been made considering FRBCSs. In our
opinion, that could be very interesting since, apart from the
accuracy improvement, the use of bagging, and especially its
combination with a feature selection process, can carry two
interesting, collateral advantages for the design of FRBCSs,
making them able to deal with the curse of dimensionality:
i) the simplicity of the implicit parallelism of bagging,
which allows for an easy parallel implementation; and ii)
the problem partitioning due to the feature selection at the
component classifier level, resulting in a tractable dimension
for learning fuzzy rules for each individual classifier. These
two ideas, along with the novelty of the use of the approach
for FRBCSs, justify the development of the current study.

In this way, the current contribution aims to compose
a first, preliminary approach to bagging FRBCSs with the
final goal of allowing them to deal with high dimensional
problems in a better way. To do so, we will start by ap-
plying three classifier ensemble design approaches (bagging,
random subspace, and their combination) to the case of
FRBCSs. A basic, quick, heuristic fuzzy classification rule
generation method, belonging to Ishibuchi et al.’s family
[1], will be considered to design the FRBCSs. Although we
actually know the accuracy of the resulting multiclassifiers
will be always limited by the use of this very simple and
thus inaccurate learning method, we prefer considering it in
this first study due to its quickness.

With the aim of both increasing the accuracy and reducing
the complexity (thus increasing the interpretability) of the
final classifier ensemble as much as possible, a multicriteria
genetic algorithm (GA) for component classifier selection
guided by the cumulative likelihood and based on the use of
the lexicographic order will be proposed.

This paper is set up as follows. In the next section,
the background required to understand our contribution is
presented by reviewing popular classifier ensemble design
approaches and previous works on fuzzy classifier ensem-
bles. Sec. III introduces our approaches for designing FRBCS
ensembles, while Sec. IV describes the proposed GA for
component classifiers selection. The experiments developed
and their analysis are shown in Sec. V. Finally, Sec. VI
collects some concluding remarks and future research.



II. BACKGROUND AND RELATED WORK
A. Classifier Ensemble Design Approaches

An ensemble of classifiers (also called a multiclassifier)
is the result of the combination of the outputs of a group of
individually trained classifiers in order to get a system that is
usually more accurate than any of its single components. The
best possible situation for an ensemble is that where the indi-
vidual classifiers are both accurate and fully complementary,
in the sense that they make their errors on different parts of
the problem space [11], thus they rely for their effectiveness
on the “instability” of the base learning algorithm.

According to the existing literature, there is a classical
group of approaches to generate an classifier ensembles
considering data resampling to obtain different training sets
to derive each individual classifier. In bagging [9], the indi-
vidual classifiers are independently learnt from resampled
training sets (“bags”), which are randomly selected with
replacement from the original training data set. Boosting
methods sequentially generate the individual classifiers by
selecting the training set for each of them based on the per-
formance of the previous classifier(s) in the series. Opposed
to bagging, the resampling process gives a higher probability
of selection to the incorrectly predicted examples by the
previous classifiers.

On the other hand, a second group can be found comprised
by a more diverse set of approaches which induct the
individual classifier diversity using some ways different from
resampling [12]. Feature selection plays a key role in many
of them where each classifier is derived by considering a
different subset of the original features. Random subspace
[10], where each feature subset is randomly generated, is
one of the most representative methods of this kind.

The interested reader is referred to [11], [13] for two
outstanding reviews for the case of decision tree ensembles
(both of them) and neural networks (the latter), including
exhaustive experimental studies.

B. Previous Work on Fuzzy Classifier Ensembles
An early work of fuzzy classifier ensemble design, mainly

focused on voting reasoning schemes, was proposed in
[14]. The use of boosting for the design of fuzzy classifier
ensembles has been considered in some works [15], [16],
[17], [18]. However, only a few contributions for bagging
fuzzy classifiers have been proposed considering fuzzy neu-
ral networks (together with feature selection) [19], fuzzy
adaptive neural networks [15] and fuzzy clustering-based
classifiers [20] as component classifier structures. Up to our
knowledge, no proposal has been made considering FRBCSs.

Two advanced GFS-based contributions are worthy to be
mentioned. On the one hand, an FRBCS ensemble design
technique is proposed in [21] based on the use of some
niching GA-based feature selection methods to generate the
diverse component classifiers, and of another GA for classi-
fier fusion by learning the combination weights. On the other
hand, another interval and fuzzy rule-based ensemble design
method based on the use of a single- and multiobjective

genetic selection is introduced in [22], [23]. In this case,
the coding scheme allows an initial set of either interval or
fuzzy rules, considering the use of a different features in their
antecedents, to be distributed among different component
classifiers trying to make them as diverse as possible by
means of two accuracy and one entropy measures. Besides,
the same authors presented a previous proposal in [24], where
a multiobjective EA generated a Pareto set of FRBCSs with
different accuracy-complexity tradeoffs to be combined into
an ensemble.

III. BAGGING FUZZY RULE-BASED
CLASSIFICATION SYSTEMS

A. Individual FRBCS Composition and Design Method
The FRBCSs considered in the ensemble will be based on

fuzzy rules Rj with a class Cj and a certainty degree CFj

in the consequent: If x1 is Aj1 and . . . and xn is Ajn then
Class Cj with CFj , j = 1, 2, . . . , N , and they will take their
decisions by means of the single-winner method [1].

To derive the fuzzy knowledge bases, one of the heuristic
methods proposed by Ishibuchi et al. in [1] is considered:
Cj is computed as the class h with maximum confidence
according to the rule compatible training examples D(Aj) =
{x1, . . . , xm}:

c(Aj ⇒ Class h) =
|D(Aj)

T

D(Class h)|
|D(Aj)|

=

=
P

p∈Class h µAj
(xp)

P

m
p=1

µAj
(xp) ; h = 1, 2, ..., M ;

CFj is obtained as the difference between the confidence
of the consequent class and the sum of the confidences of
the remainder (called CF IV

j in [1]):

CFj = c(Aj ⇒ Class Cj) −

m∑

h=1;h6=Cj

c(Aj ⇒ Class h).

This method is good for our aim of designing FRBCS
ensembles since it is simple and quick. However, it carries
some drawbacks. The first one is its low accuracy, which will
affect the final accuracy of the generated ensembles. Besides,
it generates an excessive number of rules, which will make
impossible to run it on pure bagging approaches without
feature selection when the number of problem attributes and
the granularity are high. To solve that, one can think on using
the extension of the popular Wang and Mendel’s method for
classification problems [25], but the resampling applied by
bagging would have a very small influence on the fuzzy rule
base generated by the method (all the consequent classes
would be the same and only the certainty degree would be
affected).

B. FRBCS Ensemble Design Approaches Considered
Three different ensemble generation methods, bagging,

random subspace, and their combination, are considered to
build FRBCS multiclassifiers in the current study.

For the bagging approach, the bags are generated with the
same size as the original training set, as commonly done. In



the case of random subspace, all the classifiers will consider
the same number of features, and they will be independently,
randomly selected for each of them between those available.
Finally, the bagging + random selection approach combines
the previous two design mechanisms.

In order to keep the interpretability of the generated
classifier ensembles as high as possible, two decisions will
be made. First, no weights will be considered to combine
the outputs of the component classifiers to take the final
multiclassifier decision, but a pure voting approach will be
applied: the ensemble class prediction will directly be the
most voted class in the component classifiers output set.
Besides, a multicriteria GA for classifier selection will be
applied to design the optimal ensemble from the individual
classifiers derived by each of the former three approaches.

IV. A NEW PROPOSAL OF A MULTICRITERIA
GENETIC-BASED CLASSIFIER ENSEMBLE

SELECTION METHOD
The determination of the optimal size of an ensemble is

an important issue for obtaining both the smallest test error
and a good accuracy-complexity trade-off. In the current con-
tribution we aim to propose a GA-based classifier selection
method to be applied on the generated FRBCS ensemble.
Some previous approaches have considered the use of train-
ing error measures, such as the ensemble training error [26],
or the average of the individual classifier classification errors
either on the training set or on their respective bags [23] for
this task. However, these kinds of measures do not seem
appropriate as they can lead to overfitting the data set, and
they should be avoided or complemented with other diversity
measures, as in the latter paper.

In this way, we propose to guide our GA by computing the
cumulative likelihood of the selected ensemble, computed as
described in the next subsections.
A. Likelihood-based Quality Assessment of a Subset of an
Ensemble

We will use the likelihood to assess the quality of the
selected subsets S ⊂ T = {1, . . . , l}, as it allows us
to discern differences between ensembles with the same
training error and, especifically, between those with null
error. In the latter cases, a training error-based measure
guiding a learning process will automatically end up with
the learning, while likelihood will go on improving the
estimations of the probability distributions for each class,
thus reducing the chances of overfitting the training data. Let
the classes h1(x), h2(x), . . . , hl(x) be the decisions of the
component classifiers of the selected ensemble S for an input
value x = (x1, . . . , xn). We will assume that the fraction of
the members of S that agree on the class of x is an estimate
of the conditional probability of that class:

PS(C|x) =
1

|S|
· # {i ∈ S | hi(x) = C} .

The likelihood of the subset S, to be maximized, is:

LS =
∏

k

PS(Ck |xk).

As the small values of LS may produce numerical insta-
bilities, we use instead a bounded log-likelihood:

L′
S =

∑

k

log(PS(Ck |xk) + ε),

where the value ε foresees that case for which none of the
members of the subset has found the true class of the pattern.

B. Cumulative Likelihood
The simplest strategy to find the optimal set S∗ verifying

S∗ = arg maxS⊂T L′
S is a greedy algorithm based on either

starting from scratch and adding the best new members till
the likelihood of the augmented ensemble is equal or lower
(forward selection), or starting with the whole ensemble and
iteratively removing members until the likelihood starts to
decrease (backward selection). Both greedy algorithms are
O(l2), but they will not find the global optimum but in
particular cases.

We propose to sort the members of the ensemble, so that
the most relevant classifiers have the lowest indices and those
redundant members that can be safely discarded are in the
last places. The degree to which a permutation fulfills this
goal is measured by means of the cumulative likelihood of
the ensemble, defined as the vector containing the likelihood
values of those subsets comprising the first classifier, the set
formed by the first and the second, and so on.

C. Genetic Optimization of the Cumulative Likelihood
The main novelty of our proposal is that it deals with

component classifier selection as a multicriteria problem in
order to be able not only to obtain a single solution, i.e., a
classifier ensemble composition, but a list of possible ensem-
ble designs, ranked by their quality (cumulative likelihood),
from a single chromosome.

To do so, the GA looks for an optimal ordering of the
component classifiers. The coding scheme is thus based
on an order-based representation, a permutation Π =
{j1, j2, . . . , jl} of the l originally generated individual clas-
sifiers. In this way, each chromosome encodes l different
solutions to the problem, based on considering a “basic”
ensemble comprised by a single classifier, that one stored
in the first gene; another one composed of two classifiers,
those in the first and the second genes, and so on.

The fitness function is thus multicriteria, being composed
of an array of l values, Li = L′

{j1,j2,...,ji}
, corresponding

to the cumulative likelihood of the l mentioned ensemble
designs. Thanks to all of this, the best chromosome is
that member in the population whose maximum cumulative
likelihood is the highest. Then, the output of the GA is the
ensemble comprising the classifiers from the first one to
the one having the maximum cumulative likelihood value
(although any other design not having the optimal likelihood
but, for example, showing a lowest complexity can also be
directly extracted).

Instead of using a Pareto-based approach [27], a lexico-
graphical order is considered to deal with the multicriteria
optimization, since in our opinion it better matches our



scenario. In this way, when comparing two chromosomes,
one is better than the other if it takes a better (higher)
maximum value of the cumulative likelihood. In case of
tie, the first positions of the fitness arrays are compared. If
both first positions are of equal value, the second position is
compared, and so on.

In order to increase its convergence rate, the algorithm
works following a steady-state approach. The initial pop-
ulation is composed of randomly generated permutations.
In each generation, a tournament selection of size 3 is
performed, and the two winners are crossed over to obtain
a single offspring that directly substitutes the loser. In this
first study, we have considered OX crossover and the usual
exchange mutation.

V. EXPERIMENTS AND ANALYSIS OF RESULTS

A. Experimental Setup
To evaluate the performance of the FRBCS ensembles

generated, we have selected four popular data sets from the
UCI machine learning repository (see Table I). In all of them,
every attribute is continous. As can be seen, the number of
features range from a small number (8) to a large one (60).
However, the number of examples is somehow low, ranging
from 208 to 846, and we have left for future works the study
of other data sets with a larger number of examples (higher
than 1,000), both with small and large numbers of attributes.

TABLE I
DATA SETS CONSIDERED

Data set #attr. #examples #classes
Pima 8 768 2
Glass 9 214 7

Vehicle 18 846 4
Sonar 60 208 2

In order to compare the accuracy of the considered clas-
sifiers, we used Dietterichs 5×2-fold cross-validation (5×2-
cv) [28]. Two different granularities, 3 and 5, are tested for
the single FRBCS derivation method, as well as it is run
by considering three different feature sets: the whole set1

and two subsets of size 3 and 5 selected by means of the
largely used Battiti’s MIFS filter feature selection method
[29], which has been run by considering a discretization of
the real-valued attribute domains in ten parts and setting the
β parameter to 1.

The FRBCS ensembles generated are initially comprised
by 50 classifiers, before applying the genetic selection
method. In order to make the learning problem tractable and
to obtain compact component classifiers, small values for the
granularity and the number of features selected (in the cases
where random subspace is considered) has been chosen (3
and 5 in both cases).

1For Sonar and Vehicle, we have considered a subset of 10 features also
selected with Battiti’s method since the number of possible rules is too large
to allow the run with all the attributes.

The GA for the component classifier selection works
with a population of 50 individuals and runs during 50
generations. The mutation probability considered is 0.05.

All the experiments have been run in an Intel dual-core
Pentium 2.8 GHz computer with 2 GBytes of memory, under
the Linux operating system.

B. Single FRBCS vs. Bagging FRBCS ensembles
The statistics (5×2-cv error, number of rules and run time

required for each run, expressed in seconds) for the single
FRBCSs are collected in Table II. There are three blocks for
each granularity value considered, each of them with three
rows corresponding to three feature sets sizes: the whole
initial set, 3 and 5.

TABLE II
RESULTS FOR THE SINGLE FRBCSS

Pima Glass Vehicle Sonar
3 labels 5×2-cv 0.266 0.416 0.482 0.250
all #attr. #rules 2497.50 2571.80 13811.60 8564.00

time 3.06 5.39 45.98 5.87
3 labels 5×2-cv 0.266 0.500 0.582 0.276
3 attr. #rules 26.90 24.70 21.60 24.80

time N/A N/A 0.10 0.13
3 labels 5×2-cv 0.266 0.446 0.549 0.261
5 attr. #rules 178.50 135.30 136.40 146.60

time 0.17 N/A 0.24 0.16
5 labels 5×2-cv 0.272 0.394 0.390 0.285
all #attr. #rules 11199.90 5535.10 67118.33 44040.33

time 96.46 459.06 1424.47 701.01
5 labels 5×2-cv 0.233 0.434 0.422 0.283
3 attr. #rules 78.20 62.20 46.20 74.70

time N/A N/A 0.13 0.13
5 labels 5×2-cv 0.246 0.376 0.430 0.287
5 attr. #rules 682.70 291.00 437.60 615.20

time 0.82 0.51 1.37 0.35

On the other hand, those results for the FRBCS ensembles
generated from the three different approaches considered,
bagging, random subspace and their combination, are shown
in Table III. No value is shown for Vehicle and Sonar with
5 labels, due to the excessive computation time required.

As can be seen in Table II, the best results are achieved
with 5 labels in every problem but in Sonar, where having
a larger granularity overfits the data set. Besides, it seems a
feature selection is always needed to achieve the best result,
although this conclusion can not be fully checked for the
case of the two larger problems, Vehicle and Sonar.

Concerning the FRBCS ensembles obtained, the first con-
clusion we can draw is that bagging is performing properly
as it reduces the test error in every case (this confirms
our assumption that the classifiers are unstable enough).
Nevertheless, this error decrease is obtained at the cost of
a huge complexity addition. We were expecting to get a
good trade-off between accuracy and complexity through
the two ensemble design techniques considering feature
selection, random subspace and bagging + random subspace.
In fact, when applying these approaches, either a lower
number of rules to that of the individual FRBCS with all
the variables is usually obtained or the learning problem



TABLE III
RESULTS FOR THE FRBCS ENSEMBLES

Pima Glass Vehicle Sonar
Bagging 5×2-cv 0.265 0.405 0.407 0.166
3 labels #rules 112393 104630 639175 619296

time 148.29 256.18 2289.85 350.58
R.S. 5×2-cv 0.333 0.494 0.499 0.284

3 labels #rules 1222 1107 1204 1231
time 1.40 0.70 1.69 0.75

R.S. 5×2-cv 0.284 0.431 0.458 0.235
3 labels #rules 8542 6358 8437 8902

time 7.39 3.68 10.07 2.80
Bag. + 5×2-cv 0.331 0.534 0.500 0.284

R.S. #rules 1201 1038 1189 1196
3 attr. time 1.33 0.74 1.74 0.72
Bag. + 5×2-cv 0.285 0.454 0.451 0.241

R.S. #rules 7983 5709 8016 8122
5 attr. time 6.97 3.80 9.92 2.64

Bagging 5×2-cv 0.269 0.364 N/A N/A
5 labels #rules 450291 213365 N/A N/A

time 556.92 254.49 N/A N/A
R.S. 5×2-cv 0.288 0.500 0.425 0.267

5 labels #rules 3511 2493 3661 4024
time 2.89 1.59 3.91 1.55

R.S. 5×2-cv 0.253 0.418 0.380 0.201
5 labels #rules 31910 15162 33951 38921

time 35.81 23.47 68.77 12.46
Bag. + 5×2-cv 0.285 0.486 0.429 0.278

R.S. #rules 3219 2182 3443 3623
3 attr. time 2.81 1.64 3.88 1.48
Bag. + 5×2-cv 0.256 0.423 0.375 0.212

R.S. #rules 27719 12330 30647 32031
5 attr. time 34.29 23.08 67.22 11.66

becomes tractable when it was not for the latter. Besides, the
run times are significantly reduced. Unfortunately, the two
latter techniques show worse performance than pure bagging
for every problem when using 3 labels, and also for Glass
with 5 labels. Moreover, they do not always overcome their
counterpart single classifier in the two smaller problems.
It seems that, opposite to the use of random subspace
with decision trees, the fuzzy classifier induction technique
considered (see Sect. III-A) is not able to derive accurate
classifiers when using randomly selected features and that a
heuristic selection as that applied by Battiti’s MIFS based
on mutual information is required. This will be studied in
future works.

In the two feature selection approaches, the ensembles
considering 5 features always outperform the ones with 3,
as expected. However, bagging + random subspace variants
do not always overcome their pure random subspace coun-
terparts.

Finally, notice that overall, the best FRBCS classifier
ensembles generated for Glass, Vehicle and Sonar get a lower
error than their corresponding best individual fuzzy classifier.
For the case of Pima, the best ensemble is outperformed by
the best single FRBCS, showing how our ensemble designs
are not beneficial for this data set.

TABLE IV
RESULTS FOR THE FRBCS ENSEMBLES SELECTED BY THE GA

Pima Glass Vehicle Sonar
5×2-cv 0.257 0.363 0.402 0.198

Bagging #classifiers 5.3 8.5 11.8 6.8
3 labels #rules 11848 17975 161038 88489
all #attr. avg. #rules 2241 2140 13586 13016

time 105.44 30.36 125.11 29.66
Random 5×2-cv 0.265 0.388 0.446 0.259
Subspace #classifiers 2.6 10.3 12.0 12.6
3 labels #rules 64 227 285 316
3 attr. avg. #rules 24 22 23 25

time 105.44 29.97 118.81 29.09
Random 5×2-cv 0.260 0.380 0.426 0.216
Subspace #classifiers 2.4 9.9 11.3 17.5
3 labels #rules 425 1236 1980 3142
5 attr. avg. #rules 176 124 175 183

time 106.68 29.95 118.62 29.14
Bagging + 5×2-cv 0.260 0.388 0.440 0.236
Random S. #classifiers 3.4 13.7 11.1 17.5

3 labels #rules 83 287 271 421
3 attr. avg. #rules 24 21 24 24

time 106.55 29.75 119.37 28.89
Bagging + 5×2-cv 0.253 0.385 0.421 0.235
Random S. #classifiers 4.4 12.7 10.7 17.4

3 labels #rules 719 1471 1789 2877
5 attr. avg. #rules 163 115 169 166

time 106.06 30.25 119.46 28.98
5×2-cv 0.271 0.354 N/A N/A

Bagging #classifiers 14.4 17.9 N/A N/A
5 labels #rules 129676 77205 N/A N/A
all #attr. avg. #rules 9045 4313 N/A N/A

time 105.46 30.45 N/A N/A
Random 5×2-cv 0.244 0.431 0.391 0.246
Subspace #classifiers 5.0 9.3 16.1 15.2
5 labels #rules 367 523 1228 1267
3 attr. avg. #rules 73 56 76 84

time 105.41 30.24 118.93 29.05
Random 5×2-cv 0.253 0.383 0.378 0.280
Subspace #classifiers 7.5 14.0 9.5 3.2
5 labels #rules 4920 4298 8290 2867
5 attr. avg. #rules 653 312 877 903

time 106.96 29.80 122.12 29.31
Bagging + 5×2-cv 0.247 0.432 0.397 0.247
Random S. #classifiers 9.0 10.5 12.4 22.8

5 labels #rules 604 504 899 1654
3 attr. avg. #rules 67 50 73 72

time 106.31 29.98 119.81 29.02
Bagging + 5×2-cv 0.253 0.379 0.359 0.247
Random S. #classifiers 9.7 13.1 12.8 13.4

5 labels #rules 5532 3425 8995 8680
5 attr. avg. #rules 564 262 708 662

time 105.65 30.04 122.54 29.32

C. Genetic Selection for FRBCS ensembles

The values for the different indices related to the finally
selected FRBCS ensembles using the proposed GA are
collected in Table IV. Apart from the usual test error and run
time, the number of component classifiers, the total number
of fuzzy rules in the selected ensemble and the mean of the
number of rules in each classifier are shown for each case.

For comparison purposes, we have also run the same GA
considering the usual ensemble training error as fitness func-
tion. The results were always similar or worse (especially for
Sonar), and are not shown due to the lack of space.



In view of these results, we should first notice that the
selected ensembles outperform the initial ones in all the
cases but in three configurations for the Sonar problem (those
with the best accuracy: pure bagging with 3 labels, and
random subspace for 5 labels, with and without bagging). In
those cases, the training errors of the individual classifiers
are equal to zero, and it seems the number of generations
of the GA was too small in order the cumulate likelihood
measure achieves a good solution. On the other hand, it can
also be seen how the accuracy-complexity trade-off is pretty
good since the number of selected classifiers is usually small
(around 10), being always lower than 23, less than the half
of the original number of component classifiers.

Finally, comparing the best results overall, the selected
ensembles are the best choice for two of the four problems,
Glass and Vehicle. While in the former case this requires
a huge complexity increase with respect to the best in-
dividual classifier in Table II, in the latter, the accuracy
improvement also comes with a huge complexity decrease.
As said, for the case of Pima, the FRBCS ensembles are
not able to improve the single fuzzy classifiers. For Sonar,
very good results in terms of both accuracy and complexity
are obtained, significantly overcoming those of the single
classifiers. Although the test errors of the best original
FRBCS ensembles increase after the selection, as already
mentioned, another good result is obtained. In summary, it
seems that the proposed methodology performs better for the
case of true high dimensional problems with a large number
of variables, which was our original aim.

VI. CONCLUDING REMARKS AND FUTURE
WORKS

We have proposed the use of bagging and random sub-
space approaches, together with a likelihood-guided multicri-
teria GA for component classifier selection, to design FRBCS
ensembles with a good accuracy-complexity trade-off, able
to deal with classification problems with a large number of
features. The results obtained in some popular data sets of
high dimension have been quite promising.

Many different future works arise from this first, prelimi-
nary study. We can mention the use of more advanced feature
selection approaches for the component classifiers, the design
of more advanced genetic ensemble selection techniques (for
example, the use of Pareto-based algorithms), or the use of
more powerful FRBCS learning methods.
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