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Abstract

A preliminary study combining two choices of a diver-
sity measure with an accuracy measure in two bicriteria fit-
ness functions to genetically select fuzzy rule-based multi-
classification systems is conducted in this paper. The fuzzy
rule-based classification system ensembles are generated
by means of bagging and mutual information-based feature
selection. Several experiments were developed using four
popular UCI datasets with different dimensionality in or-
der to analyze the accuracy-complexity trade-off obtained
by a genetic algorithm considering the two fitness functions.
Comparison are made with the initial fuzzy ensemble and a
single fuzzy classifier.

1. Introduction

Multiclassification systems (MCSs1) are very promising
tools to obtain better performance than a single classifier
dealing with complex classification problems, especially
when the number of dimensions or the size of the data are
really large [13]. The most common base classifiers are de-
cision trees [11], neural networks [18], and more recently
fuzzy classifiers [3, 20].

In previous studies [5, 6], we described a methodology
in which classical MCS design approaches such as bagging
[2], random subspace [11], and mutual information-based
feature selection [1] are used to generate fuzzy rule-based
multiclassification systems (FRBMCSs). The approach is
based on a basic heuristic fuzzy classification rule genera-
tion method [12] and a classifier selection technique based
on a genetic algorithm (GA) driven by a multicriteria fitness
function.

We concluded that a feature and an instance selec-
tion procedure combined with a simple grid partitioning
fuzzy rule-based classification system (FRBCS) to form

1In the following we will use MCS and ensemble as synonyms.

FRBMCS is a good approach to overcome the curse of di-
mensionality in large datasets. Nevertheless, once a set of
classifiers has been trained, we still need to deal with the
high number of rules and the correlations between individ-
ual classifiers. This is why a selection of the classifiers is
so crucial. As said, we already proposed a multicriteria
GA guided by several fitness functions, based on the like-
lihood [5], the training error [6], or the Out-Of-Bag error
[4]. This methodology, quite novel in this topic, lead us to
the generation of different compact sets of individual classi-
fiers, while still preserving its accuracy, in a single GA run.
However, the experimentations carried suggested the choice
of the fitness function is very dependent of the problem be-
ing solved. For instance, when using the training error, the
accuracy of two FRBMCSs can be similar or even perfect,
making difficult for the GA to discriminate between them in
order to improve the generalization ability. On the contrary,
only using the likelihood seems to give bad results on many
datasets. This suggested us to combine different kinds of
error-based criteria to overcome this issue, producing better
results than any single criterion in isolation [24].

The aim of the current contribution is to take a step ahead
in the latter approach by analyzing the influence of diver-
sity measures, which aim to maximize the instability of the
individual classifiers composing the MCS to obtain perfor-
mance improvement. To do so, we propose to combine two
diversity measures with the training error to define two dif-
ferent bicriteria fitness functions. As in our previous pub-
lication [24] we combine them using the two most simple
ways: weighted average and lexicographic order (i.e. con-
sidering the optimization of a single criterion, and using the
second in case of a tie). We aim to check if two fitness
functions using diversity measures (DIVs) [14] will perform
better in terms of accuracy than a fitness function using the
training error in isolation.

A preliminary study will be conducted on small and
medium size datasets from the UCI machine learning repos-
itory to test the two different fitness functions, each one us-
ing a different DIV, in comparison to a single classifier, the



original FRBMCS, and the GA-selected FRBMCSs using
a training error-based fitness function. Several parameter
settings for the global approach (e.g. different granularity
levels as well as different feature selection methods) will be
tested and compared regarding the accuracy and the size of
the rule base obtained by a single classifier and the original
FRBCS ensemble.

This paper is set up as follows. In the next section, some
of the existing GA-based methods to select MCSs are re-
viewed as well as a brief overview on the use of diversity
measures is shown. Sec. 3 recalls our approach for design-
ing FRBMCSs considering bagging and feature selection.
Sec. 4 describes the proposed multicriteria GA for compo-
nent classifier selection with the two new fitness functions
based on the use of the two selected DIVs. The experiments
developed and their analysis are shown in Sec. 5. Finally,
Sec. 6 collects some concluding remarks and future research
lines.

2 Background and Related work

2.1 Genetic selection of MCSs

In general, the selection of a subset of classifiers is done
using the overproduce-and-choose strategy (OCS) [19], in
which a large set of classifiers is produced and then selected
to extract the best performing subset. GAs are a popu-
lar technique within this strategy. In the literature, perfor-
mance, complexity and DIV measures are usually consid-
ered as search criteria. Complexity measures are employed
to increase the interpretability of the system whereas DIVs
are used to avoid overfitting.

Among the different genetic OCS proposals, we can re-
mark the following ones. In [17], a hierarchical multi-
objective GA (MOGA) algorithm, performing feature se-
lection at the first level and classifier selection at the second
level, is presented which outperforms classical methods for
two handwritten recognition problems. The MOGA allows
both performance and diversity to be considered for MCS
selection. In [10], a GA is used to select from seven diver-
sity heuristics for k-means cluster-based ensembles and the
ensemble size is also encoded in the genome. In the study
of Martı́nez-Muñoz et al. [15], a GA is compared to five
other techniques for ensemble selection. Even if the perfor-
mance of the GA was the worst obtained, they showed that
while selecting a small subset of classifiers, the generaliza-
tion error was significantly decreased. In [9], the authors
developed a multidimensional GA to optimize two weight-
based models, in which the weights are assigned to each
classifier or to each class. They applied their system to six
different classifiers (only linear and quadratic classifiers are
explored), but on only two small datasets and without com-
paring to the results obtained on a single classifier. Finally,

our own previous studies [5, 6] also consider a multicriteria
GA for the ensemble selection in an OCS fashion, with per-
formance (training error) and complexity as criteria to guide
the GA. The performance obtained with the initial MCS is
outperformed by the ensemble selected by the GA, while
the system is simplified. In our current contribution, we
will confirm this conclusion by the study of two improved
fitness functions mixing the two most used criteria: the ac-
curacy and the complexity of the classifiers. The fitness
function will directly incorporate either one accuracy cri-
teria (the training error) or one accuracy criteria combined
with a DIV, while the MCS complexity will be implicitly
optimized by the considered coding scheme (see Sec. 4).

2.2 Diversity measures

In general, it seems that obtaining a high diversity be-
tween classifiers is the aim to be reached, when aiming to
achieve performance improvement of MCSs. In the last few
years, a group of researchers devoted their attention to the
DIVs [14, 21, 22, 23, 25], as they could improve the insta-
bility of classifiers. Several DIVs were proposed, however
all of them demonstrated similar characteristics.

In Kuncheva et al. [14] ten different DIVs were pro-
posed to investigate their influence on the ensemble accu-
racy when being considered as the only optimization cri-
terion. The Q-statistic was the most interesting one, as it
showed a correlation between the accuracy and the diver-
sity.

In Ruta et al. [21], classifiers were generated using a sin-
gle measure, either the diversity, including sixteen different
DIVs, or the ensemble error. The best results were obtained
with the error and DIVs correlated with the error. The ex-
periment indicated that, out of the whole DIVs selected, the
correlation coefficient and the Q-statistic provided the worst
results.

Although both authors substituted accuracy by diversity,
Tsymbal et al. [25] combined these two measures for fea-
ture selection in MCSs and conducted experiments over five
different DIVs.

In Dos Santos et al. [22], an experimentation concern-
ing twelve different DIVs used with a single and a multi-
objective GA were conducted. Moreover, in [23], four se-
lected DIVs were used to justify a dynamic OCS strategy
for the selection of clasifier ensembles. The two best mea-
sures introduced in [22, 23] were the double fault and the
difficulty.

All the previous authors agreed that DIVs are not useful
to substitute the ensemble error, as the correlations depend
on the dataset. However, combining a DIV with an error
measure is still an open issue, since the use of the latter in
isolation seems to be better in most of the cases. This idea
led us to include two DIVs into the bicriteria fitness function



of our genetic MCS selection method, in combination with
the selected ensemble training error.

3 Bagging and feature selection-based
FRBMCSs

In this section we will both detail how the individual
classifiers and the FRBMCSs are designed. A normalized
dataset is split into two parts, a training set and a test set.
The training set is submitted to an instance selection and
a feature selection procedure in order to provide individual
training sets (the so-called bags) to train simple FRBCSs
(through the method described in Sec. 3.1). The instance se-
lection and the feature selection procedures are described in
Sec. 3.2. After performing the training stage on all the bags,
we got an initial FRBMCS, which is validated using the
training and the test errors as well as a measure of complex-
ity based on the total number of rules in the FRBCSs. This
ensemble is selected using a multicriteria GA (described
in Sec. 4) guided by accuracy- and diversity-based fitness
functions. The final FRBMCS is validated using different
accuracy (training error, test error) and complexity (number
of classifiers, total number of rules) measures.

3.1 Individual FRBCS design method

The FRBCSs considered in the ensemble will be based
on fuzzy rules Rj with a class Cj and a certainty degree
CFj in the consequent: If x1 is Aj1 and . . . and xn is Ajn

then Class Cj with CFj , j = 1, 2, . . . , N . They will take
their decisions by means of the single-winner method [12].

To derive the fuzzy knowledge bases, one of the heuris-
tic methods proposed by Ishibuchi et al. in [12] is con-
sidered. The consequent class Cj and certainty degree
CFj are statistically computed from all the examples lo-
cated in a specific fuzzy subspace D(Aj). Cj is computed
as the class h with maximum confidence according to the
rule compatible training examples D(Aj) = {x1, . . . , xm}:
c(Aj ⇒ Class h) = |D(Aj)

⋂
D(Class h)|/|D(Aj)|.

CFj is obtained as the difference between the confidence
of the consequent class and the sum of the confidences of
the remainder (called CF IV

j in [12]).

3.2 FRBMCS design approaches

The generation of the FRBMCSs is performed by means
of a bagging approach combined with a feature selection
method [6]. Three different feature selection methods, ran-
dom subspace [11] and two variants of Battiti’s MIFS [1]
(greedy and GRASP [8]), are considered.

Random subspace is a method in which we select ran-
domly a set of features from the original dataset. The Bat-
titi’s MIFS method is based on a forward greedy search

using the Mutual Information measure, with regard to the
class. This method selects the set S of the most informative
features about the output class which cannot be predicted
with the already selected features. It uses a coefficient, β,
to set up the penalization on the information brought by the
already selected features.

The MIFS-GRASP variant is an approach where the set
is generated by iteratively adding features randomly chosen
from a Restricted Candidate List composed of the best τ
percent decisions according to the Battiti’s quality measure.
Parameter τ is used to control the amount of randomness
injected in the MIFS selection. With τ = 0.5, we get an
average amount of randomness, while still preserving the
quality-based ordering of the features.

For the bagging approach, the bags are generated with
the same size as the original training set, as commonly done.
In every case, all the classifiers will consider the same fixed
number of features.

Finally, no weights will be considered to combine
the outputs of the component classifiers to take the final
FRBMCS decision, but a pure voting approach will be ap-
plied: the ensemble class prediction will directly be the
most voted class in the component classifiers output set.
The lowest-order class would be taken in the case of a tie.

4 A multicriteria GA-based MCS selection
method

In this section we will report the foundations of the mul-
ticriteria genetic selection process. Then, we will introduce
the used evaluation criteria and the two new bicriteria fitness
functions.

4.1 Multicriteria genetic optimization

The GA searches for an optimal sequence of the clas-
sifiers, in the way that the most significant classifiers have
the lowest indexes, while those redundant members, which
can be safely excluded, are in the last positions. The cod-
ing scheme is thus based on an order-based representation,
a permutation Π = {j1, j2, . . . , jl} of the l originally gen-
erated individual classifiers. In this way, each chromosome
encodes l different solutions to the problem, based on con-
sidering a “basic” MCS comprised by a single classifier, that
one stored in the first gene, then another one composed of
two classifiers, those in the first and the second genes, and
so on.

So, the computation of the evaluation criteria for the
whole ensemble is obtained in a cumulative way, defined
as a vector containing the measured values of the first clas-
sifier; the subset formed by the first and the second; and
so on. The fitness function is thus using the values of a



multicriteria vector, being composed of an array of l val-
ues, Li = L′

{j1,j2,...,ji}
, corresponding to the cumulative

measure-value of the l mentioned MCS designs. The two
different vectors corresponding to two different chromo-
somes are compared by the highest values of one of the
selected criteria (see Sec. 4.2).

At the end of the GA run, the best chromosome is that
member in the population overcoming the others using the
considered criterion. Then, the final design encoded in this
chromosome is the MCS comprising the classifiers from the
first to the one having the the best cumulative measured
value. Nevertheless, any other design not having the opti-
mal accuracy but, for example, showing a lowest complex-
ity can also be directly extracted. In this way, an implicit
use of a complexity criterion is also made.

To increase its convergence rate, the GA works following
a steady-state approach. The initial population is composed
of randomly generated permutations. In each generation,
a tournament selection of size 3 is performed, and the two
winners are crossed over to obtain a single offspring that di-
rectly substitutes the loser. In this study, we have considered
OX crossover and the usual exchange mutation [16].

4.2 The three used evaluation criteria

An exhaustive study using DIVs was conducted in [22,
23]. Two measures can be highlighted from it: the difficulty
(θ) and the double fault (δ). In this contribution we have
chosen these two DIVs to perform our preliminary study.
Apart from θ and δ, we use the Training Error (TE) as the
evaluation criteria for the definition of the fitness functions.

The TE is computed as follows. Let h1(x), . . . , hl(x) be
the outputs of the component classifiers of the selected en-
semble E for an input value x = (x1, . . . , xn). For a given
sample {(xk, Ck)}k∈{1...m}, the TE of that MCS is:

TE =
1

m
· #{k | Ck 6= arg max

j∈{1...|E|}

hj(x
k)} (1)

with |E| being the number of classifiers in the selected en-
semble.

Fitness evaluation using TE alone was already studied in
one of our previous publications [6]. We will call it Training
Error-based Fitness Function (TEFF).

The difficulty measure θ is computed as follows. Let
X = {i/|E|}i∈{0,...,|E|} and Xk ∈ X be the proportions of
classifiers classifying correctly the instance xk. Then, θ is
equal to V ar({X1, . . . , Xk, . . . , Xm}).

The pairwise measure δ for two classifiers hi and hj is
computed as follows:

δi,j =
N00

ij

#samples
(2)

with N00
ij being the number of examples missclassified by

both hi and hj . The global value of the measure for the
whole selected ensemble is computed as follows:

δavg =
2

L(L − 1)

L−1∑

i=1

L∑

j=i+1

δi,j (3)

with L being the number of component classifiers in the en-
semble.

4.3 The two bicriteria fitness functions

As said, we propose two approaches for the fitness func-
tion combining one of the selected DIVs (θ, δavg) with the
TE measure, using the Lexicographical Order-based Fit-
ness Function (LOFF) or the Weighted Combination Fitness
Function (WCFF).

Notice that, working in this way, we introduce a second
multicriteria optimization level in our algorithm. On the one
hand, a multicriteria optimization is made by means of the
considered coding scheme and the cumulative evaluation of
the possible MCS designs (see Sec. 4.1). On the other hand,
a higher level is added when evaluating the latter possible
designs by means of a bicriteria fitness function.

In the first one, the LOFF, we use the lexicographical or-
der to deal with the multicriteria optimization. When com-
paring two chromosomes, one is better than the other if it
takes a better (lower) minimum value of the TE. In case of
a tie, the DIV measure is considered. The ordering scheme
gives priority to TE, as it provided better results in our pre-
vious studies, while taking the DIV only as a last resort in
the case of the frequent ties encountered by the system.

In the second approach, the WCFF, we propose objective
function scalarization by a weighted combination of both
measures:

WC = factor0 ∗ α ∗ TE + (1 − α) ∗DIV (4)

where α is a weight in [0,1] and factor0 = DIV0/TE0 is a
first evaluation-based normalization using DIV0 and TE0,
the DIV and the TE values obtained by the evaluation of the
initial FRBMCS. The fitness function has to be minimized.

5 Experiments and analysis of results

To evaluate the performance of the generated FRBMCSs,
we have selected four datasets from the UCI machine learn-
ing repository (see Table 1). In order to compare the ac-
curacy of the considered classifiers, we used Dietterich’s
5×2-fold cross-validation (5×2-cv), which is considered to
be superior to paired k-fold cross validation in classification
problems [7].

Three different granularities, 3, 5 and 7, are tested for the
single FRBCS derivation method, for feature sets of size 5



Table 1. Data sets considered
Data set #attr. #examples #classes

Pima 8 768 2
Glass 9 214 7

Vehicle 18 846 4
Sonar 60 208 2

selected by means of three approaches: the greedy Battiti’s
MIFS filter feature selection method, the Battiti’s method
with GRASP (with τ equal to 0.5, see Sec. 3.2), and ran-
dom subspace. Battiti’s method has been run by consider-
ing a discretization of the real-valued attribute domains in
ten parts and setting the β coefficient to 0.1.

The FRBMCSs generated are initially comprised by 50
classifiers. The GA for the component classifier selection
works with a population of 50 individuals and runs dur-
ing 50 generations. The mutation probability considered
is 0.05. The weights of WCFF were set to 0.8 for TE and
0.2 for DIV as our aim was to allow a small influence of
the DIV in the cases in which the TE gives similar values.
The other tested values for the weights did not improve the
results significantly.

The statistics (5×2-cv error, number of classifiers, num-
ber of rules, and run time required for each run, expressed
in seconds) for the genetically selected FRBCS ensembles
using LOFF with θ and δ, WCFF with θ and δ, and TEFF
are collected in Tables 2 and 3, Tables 4 and 5, and Ta-
ble 6 respectively. The results of the single FRBCSs are
presented in Table 7 while those of the original FRBMCSs
are included in Table 8. There are three subtables for each
of the feature selection method considered. The best results
for a given feature selection methods are shown in bold and
the best values overall are outlined.

All the experiments have been run in a linux cluster at
the University of Granada on Intel quadri-core Pentium 2.4
GHz nodes with 2 GBytes of memory.

Table 2. Results for the FRBCS ensembles se-
lected by the GA using the LOFF with θ

Bagging + Greedy

Pima Glass Vehicle Sonar

5×2-cv 0.252 0.362 0.465 0.235

3 labels #classifiers 4.1 8.2 10.1 9.4

5 attr. #rules 715.5 1018.4 1426.9 1430.1

avg. #rules 175.1 123.5 139.9 151.4

time 1538.42 392.79 2066.12 384.18

5×2-cv 0.237 0.375 0.395 0.246

5 labels #classifiers 12.2 11.0 12.8 17.1

5 attr. #rules 7076.6 2959.0 6129.1 9224.6

avg. #rules 594.5 269.8 484.1 550.2

time 1540.64 381.62 1992.08 364.14

5×2-cv 0.251 0.390 0.369 0.258

7 labels #classifiers 13.5 9.3 14.2 20.3

5 attr. #rules 17537.5 3608.8 15875.1 20283.7

avg. #rules 1306.5 390.5 1126.7 998.4

time 1523.94 394.80 1967.13 348.11

Bagging + GRASP τ = 0.50

Pima Glass Vehicle Sonar

0.251 0.362 0.446 0.232

4.0 9.1 11.3 14.0

695.4 1156.7 1705.4 2256.9

172.8 124.8 153.7 160.3

1540.23 397.09 1248.16 394.00

0.244 0.368 0.403 0.230

11.5 13.8 13.9 26.5

7074.6 3690.2 8023.7 15862.8

608.6 271.8 591.2 601.1

1548.99 386.68 2039.25 362.66

0.252 0.390 0.326 0.240

15.3 11.5 13.5 17.4

20183.3 4453.6 18818.1 18849.4

1326.9 399.5 1276.0 1085.4

1525.76 393.38 1791.23 348.18

Bagging + Random Subspace

Pima Glass Vehicle Sonar

0.256 0.370 0.429 0.210

4.2 11.9 12.6 21.9

674.5 1346.9 2080.4 3645.8

160.5 114.2 167.0 166.9

1608.29 418.50 1272.52 408.69

0.260 0.389 0.380 0.220

12.6 14.7 14.5 20.4

6929.3 3524.1 10290.2 12668.2

549.9 241.8 725.8 623.5

1611.73 418.61 2087.41 369.85

0.276 0.392 0.335 0.263

16.3 13.8 20.4 13.2

20124.0 5276.9 31914.5 14795.2

1225.5 386.5 1585.7 1124.0

1561.90 411.57 2000.05 351.93

Table 3. Results for the FRBCS ensembles se-
lected by the GA using the LOFF with δ

Bagging + Greedy

Pima Glass Vehicle Sonar

5×2-cv 0.252 0.364 0.466 0.235

3 labels #classifiers 4.1 9.2 10.1 9.4

5 attr. #rules 715.5 1138.5 1414.7 1430.1

avg. #rules 175.1 123.8 139.5 151.4

time 545.14 192.71 677.16 170.28

5×2-cv 0.237 0.375 0.394 0.246

5 labels #classifiers 12.2 11.0 12.8 17.1

5 attr. #rules 7076.6 2959.0 6129.1 9224.6

avg. #rules 594.5 269.8 484.1 550.2

time 538.90 197.21 648.81 163.85

5×2-cv 0.251 0.390 0.369 0.258

7 labels #classifiers 13.5 9.3 14.2 20.3

5 attr. #rules 17537.5 3608.8 15875.1 20283.7

avg. #rules 1306.5 390.5 1126.7 998.4

time 540.56 184.89 636.21 161.39

Bagging + GRASP τ = 0.50

Pima Glass Vehicle Sonar

0.251 0.362 0.443 0.232

4.0 9.1 11.8 14.0

695.4 1156.7 1799.0 2256.9

172.8 124.8 154.1 160.3

554.46 204.46 672.80 174.03

0.244 0.368 0.403 0.230

11.5 13.8 13.9 26.5

7074.6 3690.2 8023.7 15862.8

608.7 271.8 591.2 601.1

546.70 197.72 649.61 165.04

0.252 0.390 0.362 0.240

15.3 11.5 15.0 17.4

20183.3 4453.6 20183.4 18849.4

1326.9 399.5 1367.0 1085.4

538.19 185.29 636.57 159.79

Bagging + Random Subspace

Pima Glass Vehicle Sonar

0.256 0.376 0.429 0.210

4.2 12.2 12.8 21.9

674.5 1356.2 2123.3 3645.8

160.5 112.7 167.0 166.9

555.61 209.39 675.80 175.71

0.260 0.389 0.380 0.220

12.6 14.7 14.5 20.4

6929.3 3524.1 10290.2 12668.2

549.9 241.8 725.8 623.5

560.75 202.67 646.24 164.98

0.276 0.391 0.334 0.263

16.3 13.8 20.4 13.2

20124.0 5276.9 31914.5 14795.2

1225.5 386.5 1585.7 1124.0

547.76 186.37 631.56 163.52

Table 4. Results for the FRBCS ensembles se-
lected by the GA using the WCFF with θ

Bagging + Greedy
Pima Glass Vehicle Sonar

5×2-cv 0.252 0.369 0.510 0.247
3 labels #classifiers 5.0 14.7 17.5 15.8
5 attr. #rules 848.8 1872.4 2472.8 2394.0

avg. #rules 168.0 120.9 139.7 152.4
time 579.29 194.44 1722.10 172.57

5×2-cv 0.236 0.383 0.400 0.249
5 labels #classifiers 26.0 20.1 17.5 37.2
5 attr. #rules 15122.4 5188.9 7464.0 19730.2

avg. #rules 590.7 266.2 471.7 533.8
time 566.33 197.55 1630.51 164.36

5×2-cv 0.249 0.398 0.374 0.269
7 labels #classifiers 27.1 10.0 22.4 30.5
5 attr. #rules 35127.6 3723.4 23698.3 30609.4

avg. #rules 1304.2 384.2 1047.3 999.6
time 562.16 185.42 1607.06 161.42

Bagging + Random Subspace
Pima Glass Vehicle Sonar
0.263 0.420 0.455 0.242

3.2 19.9 43.2 36.0
515.9 2242.9 6916.5 5799.7
165.0 115.8 160.1 162.1

581.36 208.72 1777.94 174.94
0.258 0.405 0.387 0.238
23.5 24.7 30.7 29.0

12833.5 6012.9 19284.6 18306.0
549.9 246.9 669.6 628.3

587.83 203.96 1731.74 163.93
0.267 0.407 0.331 0.270
22.1 26.4 33.6 14.3

26650.0 9651.0 46174.9 16376.5
1217.8 370.9 1418.2 1138.6
574.78 186.83 1644.03 161.52

Bagging + GRASP τ = 0.50
Pima Glass Vehicle Sonar
0.248 0.404 0.488 0.250

1.9 13.8 36.2 20.4
322.0 1795.2 5359.5 3296.4
168.8 126.2 148.1 164.9
578.00 204.75 1753.04 171.70
0.242 0.385 0.396 0.231
15.9 23.2 23.8 33.7

9194.7 6086.1 12194.1 20080.3
583.9 268.0 534.5 597.1
568.78 196.68 1680.45 164.95
0.254 0.422 0.357 0.257
23.8 14.5 17.4 22.7

31122.7 5798.9 20570.0 24987.1
1331.3 421.5 1222.0 1092.8
567.65 186.55 1637.21 160.15

Table 5. Results for the FRBCS ensembles se-
lected by the GA using the WCFF with δ

Bagging + Greedy
Pima Glass Vehicle Sonar

5×2-cv 0.254 0.432 0.504 0.237
3 labels #classifiers 5.1 12.9 26.1 19.7
5 attr. #rules 872.1 1581.4 3464.5 2942.4

avg. #rules 174.7 123.5 136.9 148.1
time 1214.17 192.91 1722.12 172.12

5×2-cv 0.234 0.378 0.399 0.237
5 labels #classifiers 27.5 28.2 33.1 41.4
5 attr. #rules 16377.8 7230.0 14789.7 22250.9

avg. #rules 591.4 258.4 448.7 535.4
time 1219.26 197.94 1630.61 164.87

5×2-cv 0.251 0.423 0.376 0.255
7 labels #classifiers 33.1 30.4 27.0 25.6
5 attr. #rules 42435.9 11567.8 26328.8 25278.1

avg. #rules 1291.9 372.8 991.2 991.5
time 1202.92 185.15 1609.29 161.42

Bagging + Random Subspace
Pima Glass Vehicle Sonar
0.268 0.411 0.450 0.233
6.9 18.7 40.6 37.7

1079.9 2132.2 6475.3 6121.2
157.2 117.5 159.8 162.6

1287.95 208.39 1777.99 174.37
0.258 0.361 0.382 0.220
24.1 25.6 39.7 28.8

13411.9 6236.1 24477.2 18050.8
555.9 220.2 616.3 24.5

1297.38 168.55 1739.54 166.50
0.263 0.409 0.331 0.263
26.4 33.8 47.0 13.2

31898.1 12195.5 63657.6 14795.2
1206.1 366.0 1353.9 1124.0

1245.55 185.50 1646.18 161.23

Bagging + GRASP τ = 0.50
Pima Glass Vehicle Sonar
0.260 0.417 0.481 0.249

8.3 15.7 22.1 38.4
1436.0 2005.8 3293.3 6102.2
176.4 124.1 150.0 158.7

1218.58 206.23 1757.07 171.14
0.237 0.383 0.395 0.217
29.8 28.8 22.2 40.0

17760.7 7715.0 11115.7 24051.3
599.5 277.4 517.3 601.8

1228.92 197.85 1680.90 165.92
0.251 0.404 0.349 0.240
26.5 24.0 24.8 20.2

34799.5 9025.1 27967.1 21950.1
1322.7 379.2 1151.5 1087.0

1208.79 185.00 1639.83 161.78

Table 6. Results for the FRBCS ensembles se-
lected by the GA using the TEFF

Bagging+Greedy
Pima Glass Vehicle Sonar

5×2-cv 0.257 0.360 0.461 0.235
3 labels #classifiers 4.1 7.3 10.3 12.3
5 attr. #rules 696.5 904.3 1431.0 1842.1

avg. #rules 171.5 125.4 138.3 148.3
time 94.06 26.35 103.26 25.32

5×2-cv 0.242 0.383 0.392 0.247
5 labels #classifiers 11.5 15.9 15.5 10.4
5 attr. #rules 6744.9 4233.1 7338.4 5757.7

avg. #rules 592.8 268.7 481.9 567.0
time 93.48 26.10 103.48 25.17

5×2-cv 0.258 0.393 0.374 0.258
7 labels #classifiers 12.7 8.9 14.6 6.3
5 attr. #rules 16614.3 3524.3 16102.3 6427.0

avg. #rules 1313.9 404.5 1115.7 1040.9
time 92.87 26.50 102.90 24.85

Bagging+GRASP τ = 0.50
Pima Glass Vehicle Sonar
0.254 0.372 0.449 0.237
14.4 10.2 12.9 13.9

763.0 1317.9 1991.6 2252.6
174.3 126.0 155.9 161.7
93.37 26.49 102.09 25.18
0.239 0.363 0.399 0.252
10.9 14.7 12.0 7.8

6497.4 3986.7 7227.3 4893.9
593.5 282.0 611.3 630.0
92.58 26.16 103.75 24.86
0.256 0.395 0.356 0.257
16.4 10.3 13.2 6.7

21836.6 4140.6 18296.2 7767.8
1346.2 401.9 1386.5 1148.7
92.49 26.18 102.93 25.31

Bagging + Random Subspace
Pima Glass Vehicle Sonar
0.256 0.381 0.428 0.216

4.2 13.7 13.4 20.1
703.4 1546.0 2239.5 3376.7
168.1 113.1 168.9 168.3
92.77 26.39 103.24 25.08
0.263 0.392 0.378 0.249
11.9 13.7 13.0 9.4

6680.0 3312.2 9455.9 6208.8
555.8 245.0 734.3 668.8
91.47 26.18 104.81 24.83
0.265 0.393 0.337 0.267
17.0 15.5 17.5 6.4

21289.5 5980.6 28854.2 7655.2
11248.4 386.2 1680.2 1203.7
92.31 26.08 103.52 25.19

Table 7. Results for the single FRBCSs with
feature selection

Greedy
Pima Glass Vehicle Sonar

3 labels 5×2-cv 0.266 0.446 0.549 0.261
5 attr. #rules 178.50 135.30 136.40 146.60

time 0.08 0.04 0.12 0.08
5 labels 5×2-cv 0.246 0.376 0.430 0.287
5 attr. #rules 682.70 291.00 437.60 615.20

time 0.42 0.25 0.65 0.16
7 labels 5×2-cv 0.262 0.414 0.402 0.291
5 attr. #rules 1600 431.20 1021 1218

time 1.75 1.32 3.27 0.52

GRASP τ = 0.50
Pima Glass Vehicle Sonar
0.267 0.447 0.546 0.316

179.50 137.00 135.80 169.00
0.09 0.04 0.12 0.09
0.246 0.375 0.425 0.314

682.70 293.50 418.90 752.70
30.39 0.26 0.63 0.17
0.266 0.423 0.399 0.317
1599 437.20 907.50 1470
1.71 1.34 3.25 0.55

Random Subspace
Pima Glass Vehicle Sonar
0.265 0.457 0.512 0.319
161.80 109.50 154.50 174.50
0.07 0.03 0.12 0.08

0.262 0.435 0.460 0.329
604.20 259.60 587.80 773.60
0.36 0.24 0.67 0.17

0.276 0.418 0.415 0.340
1432 410.90 1266 1536
1.66 1.32 3.37 0.63



Table 8. Results for the FRBCS ensembles
Bagging+Greedy

Pima Glass Vehicle Sonar
5×2-cv 0.261 0.463 0.525 0.255

3 labels #rules 8578 6208 6843 7282
5 attr. avg. #rules 171.55 124.16 136.87 145.65

time 3.43 1.51 4.87 2.52
5×2-cv 0.235 0.396 0.400 0.240

5 labels #rules 29405 12877 22177 26769
5 attr. avg. #rules 588.11 257.54 443.55 535.37

time 17.93 12.11 31.21 6.66
5×2-cv 0.243 0.430 0.375 0.262

7 labels #rules 64891 18633 48479 49587
5 attr. avg. #rules 11298 372.66 969.58 991.74

time 84.70 67.36 166.51 24.72

Bagging+GRASP τ = 0.50
Pima Glass Vehicle Sonar
0.262 0.464 0.494 0.246
8609 6289 7362 7951

172.18 125.77 147.24 159.03
3.45 1.53 4.91 2.57
0.234 0.405 0.399 0.220
29748 13302 25578 30068
594.95 266.04 511.56 601.36
18.05 12.23 32.79 6.96
0.247 0.425 0.353 0.242
65802 19272 54721 54684
1316 385.45 1094 1094
85.27 68.27 170.48 25.49

Bagging + Random Subspace
Pima Glass Vehicle Sonar
0.299 0.450 0.453 0.250
7936 5671 8008 8174

158.71 113.42 160.16 163.47
3.34 1.49 5.06 2.58
0.260 0.430 0.378 0.221
27199 11998 30799 31824
543.97 239.96 615.97 636.47
17.64 11.94 33.91 7.13
0.263 0.402 0.330 0.241
59824 17999 67936 57298
1196 359.98 1359 1146
82.12 66.06 174.24 25.57

5.1 Comparison of the diversity measures
for the LOFF approach

Comparing the two diversity measures, we can see how
they achieve very similar results both in terms of accuracy
and complexity:

• while θ is able to outperform δ considering the individ-
ual test error 4 times, the latter measure outperforms
the former other 4 times, although with less significant
differences,

• we should remark the large number of draws (32),

• the best individual improvement was observed on the
vehicle dataset: -10% with GRASP and 7 labels,

• the best overall result was obtained on the sonar dataset
with Random and 3 labels (draw with δ) and on the
vehicle dataset with GRASP and 7 labels,

• concerning the number of selected classifiers, θ
achieves a lower value in 5 of the 36 cases, showing
the same result in the reminder 31.

Thus, we choose θ as a LOFF representant in the following
comparisons (referred simply as the selected LOFF).

5.2 Comparison of the diversity measures
for the WCFF approach

Comparing the two diversity measures, we can see how θ
was outperformed by δ considering the individual test error
25 times (2 draws). However, it achieves lower complex-
ity levels in 27 of the 36 cases. The best individual error
improvement was observed on the glass dataset -11% with
Random and 5 labels. The best overall result was obtained
on the pima dataset with Greedy and 5 labels. Thus, we
choose δ as a WCFF representant in the following compar-
isons (referred simply as the selected WCFF).

5.3 Comparison of the three fitness func-
tions

The major observations based on the results are:

• comparing the three fitness functions, we can see how
the selected WCFF approach is able to outperform the
TEFF and the selected LOFF considering the individ-
ual test error 8 times (there were also 3 draws),

• the best overall result was obtained on the sonar dataset
with Random and 3 labels and on the vehicle dataset
with GRASP and 7 labels,

• however, the FRBMCSs based on the selected LOFF
are better than those generated with the TEFF and the
selected WCFF in 13 of the 36 cases (apart from 4
draws),

• the best overall result was obtained on the pima dataset
with Greedy and 5 labels,

• the TEFF-based FRBMCSs outperform the LOFF and
the WCFF considering individual test error for 11 of
the 36 times (1 draw). The best overall result was ob-
tained on the glass dataset with Greedy and 3 labels,

• concerning the complexity reduction, TEFF achieves
the lowest number of classifiers in 18 of the 36 cases
while the selected LOFF does so in the other 16 (apart
from 2 draws between them). The selected WCFF al-
ways generates the most complex FRBMCSs.

We may conclude that the selected LOFF and WCFF are
competitive with TEFF:
• In the direct comparison, the use of the selected LOFF

improves the single TEFF performance in 22 out of 36
cases (apart from 2 draws),

• the WCFF improves the single TEFF performance in
16 out of 36 cases,

• which indicates that the joint combination of the TE
and a diversity measure actually allows us to improve
the performance of the generated FRBMCS in our ex-
perimentation.

5.4 Genetically selected FRBMCSs vs.
single FRBCS/original FRBMCSs

In all the 36 cases, the generated FRBMCSs improve the
performance of the single FRBCS. Besides, although the
main goal of the genetic selection is to reduce the complex-
ity of the generated FRBMCS, the accuracy results obtained
from that process are also improved in most of the cases,
showing the potential of the approach. In only 6 of the 36
cases (apart from 2 draws) the original FRBMCS outper-
forms the best genetically designed one in terms of accu-
racy. Comparing the best overall TE values of the geneti-
cally selected FRBMCSs with those of the original FRBM-
CSs, the GA improves the results on three of the consid-
ered datasets: vehicle (-1.5% regarding the selected LOFF),



glass (-9% regarding the TEFF), and sonar (-4.5% regard-
ing the LOFF with both θ and δ), only giving an equal result
in the case of pima.

6 Conclusions and future works

In this study, we extended our previously developed
methodology in which a bagging approach together with
a feature selection technique are used to train FRBMCSs,
which are selected by a multicriteria GA at a later stage.
Three fitness functions were tested, the TEFF, the LOFF,
and the WCFF, respectively based on a single accuracy cri-
terion and on its combination with a DIV (θ, δ). The se-
lected FRBCS ensembles obtained performed correctly on
classification problems with a significant number of fea-
tures. By using the said techniques, we would like to obtain
FRCMCSs dealing with high dimensional data.

One of the next steps we will consider is the design of
a generic framework to define the multicriteria fitness func-
tion. At least two different information levels will be stud-
ied: the chromosome and the objective level. Furthermore,
we would like to extend this study on larger data sets (more
than 1,000 examples), to study the influence of other pa-
rameters (the GA parameters, etc.), and to design more ad-
vanced genetic MCS selection techniques (e.g. the use of
Pareto-based algorithms). Analysis of other fuzzy rule gen-
eration techniques and different diversity criteria in the al-
gorithm are other important points for future research.
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[24] K. Trawiński, A. Quirin, and O. Cordón. Bi-criteria ge-
netic selection of bagging fuzzy rule-based multiclassifica-
tion systems. In IFSA World Congress-EUSFLAT Confer-
ence, Lisbon, 2009. In press.

[25] A. Tsymbal, M. Pechenizkiy, and P. Cunningham. Diversity
in search strategies for ensemble feature selection. Informa-
tion Fusion, 6(1):83–98, 2005.


