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Abstract—In this work we propose a Pareto-based multi- Pareto set composed of multiple nondominated solutions with
objective search strategy for subgraph mining in structural g different trade-off in the satisfaction of the conflicting

g?‘;zgf‘sae; dThkenécv?(taZ%% iziggo\%‘:)‘j“;:ggri?; n?“k;%e’itaig'?ﬁﬁisca'learning problem objectives. Besides, some empirical studies
called MultiObjective Subdue (MOSubdue). MbSubdue incor- M [6], [7] have shown that Pareto-based learning approaches

porates the NSGA-II's crowding selection mechanism in order May help the search process underlying the learning al-
to retrieve a well distributed Pareto optimal set of meaningful gorithm to escape from local optima, thus improving the

subgraphs showing different optimal trade-offs between support  accuracy of the learning model. For a recent review on
and complexity, in a single run. The good performance of the ' pareto-hased multiobjective machine learning the interested
proposed approach is empirically demonstrated by using a real- reader is referred to Jin and Sendhoff [8]. The edited book
life data set concerning the analysis of web sites. . : :
by Jin [9] also constitutes a very good snapshot of the area.
I. INTRODUCTION In this paper we propose the incorporatiorPafeto-based

The need of mining structural data to uncover objects ({puglquectl\_/e sgarcth Sﬁrati%'ep']i [ﬁ] tgl gtrr?ph_ mllr:mg
concepts that relates objects (i.e., subgraphs that represent gghniques n order fo aflow them o handle the simultaneous
sociations of features) has increased in the last two decad@glimization of several conflicting goals representing differ-
thus creating the area gfaph-based data miningGBDM) ent user preferences. To do so, we have selected Subdue [10],
[1], [2]. A significant number of applications require a graphll.l]' the first a;nd the rgost class?aldgrgp.r:-lsasded rnoﬂe?ﬁe
based representation of structural information such as an?fistcovery Sys e_lr_nh,. an ar\:e T)X en te kII dob cal Wi i c
ysis of microarray data in bioinformatics, pattern discover er scenario. This ISsue has been tackled by incorporating
in a large graph representing a social network, analysis &Pareto-based multiobjective component proposed in the

transportation networks, and community discovery in We ondominated sorting genetic algorithm (NSGA-II) [12] to
data, among many othe’rs [3] the selection strategy of Subdue in order to decide the

Mining graph-based data involves an effective and ems_earch direction to be explored. This method has been called

cient manipulation of relational graphs, towards discoverinB’lg)l_ﬁubdube (M%Itljo_bjectwe Subdue). f MOSubd |
important patterns. Several approaches for knowledge dis- € subgraph dISCOVery process o ubdue evaluates

covery in graph data have been proposed in the literatufd"Y subgraph by jo_intl)_/ considering two prgferences, viz.
upport and complexity, in order to explore different search

including Subdue, the apriori family of methods, frequen?. . e SN .
subgraph discovery, Gaston, gSpan, MoFa/MoSS JoinPaEWeCt'onS within the multiobjective problem landscape. It is
' ' ' ! orth to note that MOSubdue is able to retrieve a Pareto

CloseGraph, FFSM, Spin, CLOSECUT and SPLAT, gPruné(\,' . )
etc [3]. Roughly, all the existing methods work by performingset of nondominated, meaningful subgraphs from a structural

a search in the lattice of all possible subgraphs. The undggt_abase in a single run of the algorithm, showmg different
lying search process is usually guided by a single objecti\%ot'mal trade_—of'f_s between s_u_pport and complexity. In the
which represents a unique and specific user preference. fgyrent contribution we empirically demonstra_te the goo_d
example, the extraction of those subgraphs satisfying so riormance of the proposed gpproach b.y using a real-life
minimum frequency threshold or of those subgraphs who ta set concerning the analysis of web sites [13].

size is less than/equal to some given maximum integer vaIueThe pal_pe_r IS orggnllze;c_i asthfollows.t_Sectloré . ]!Jfrses;dnts
are typical choices. some preliminaries, including the operation mode of Subdue

On the other hand, Pareto-based multiobjective evolutior‘?‘-Igorithm for suhgraph discovery, a brief literature survey,

ary search strategies [4], [5] have recently gained muc?ﬂdt s(;mtwe basic d:(aﬂr;no?s onln;ult|optj)ect|¥ﬁ ol\pjltggz%t(ljon
importance in data mining and machine learning comm glated 1o our work. Section escribes the ubdue

nities. This is due to one common benefit observed in t ethodology. Section IV provides the results obtained by our

different multiobjective learning approaches: a deeper insig gowthg wthen \f;lpplleo: tg a re_?kl]-world \&v_eb S"?‘S database.
into the learning problem can be gained by analyzing inally, section v concludes with some discussion.
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A. The Subdue Algorithm process in the lattice of all possible subgraphs. In order

Subdue [10], [11] is the first algorithm proposed in GBDMtO c_onceptually arrange all the subgraphs. in this Ia_lttlite, i
for discovering interesting and repetitive subgraphs itnacs  P€gins with the set of subgraphs (ParentList) containiig al
tural database. The algorithm uses the minimum descriptiétiquely labeled vertices (that is, each subgraph reptesen
length (MDL) principle [14] to discover frequent subgraphs©ne uniquely labeled vertex). To trave_rse_ the Iattlce_, Bebd
extract them, and replace them by a single node in ordéXtends each subgraph from ParentList in all possible ways
to compress the entire database. The maximization of ti§#her by a single edge and a vertex or by a single edge only
description length is considered and suggests how well iGPoth vertices are already in the subgraph. These subgraph
subgraph can compress the input graph. This measure 3§ kept on a queue (ChildList) and are ordered based on their
a combination of two objectives, support and complexit@Pility to compress the graph, measured by the MDL index.
(or size), which are commonly used preferences in ceDMhis queue can grow exponentially as the search progresses.

algorithms. The description length of a subgrapm graph N order to avoid that exponential explosion, Subdue uses
dataG is computed as: a variant of beam search [21] based on selecting and only

storing the topBeamWidthsubgraphs in ChildList. The
valuempy (9, G) = 1(G)/(I(g) + I(Glg)) (1) search terminates either upon reaching a user specified limi
on the number of subgraphs extended, or upon exhaustion
The description length of a graph is the necessary numbgf the search space. Once the search process terminates, the
of bits to completely describe the graph(G) and I(g) algorithm returns a list of the best subgraphs, BestListclvh
are the number of bits required to encode the grépnd  can store a maximum dflaxBestsubgraphs. Fig. 1 shows
the subgrapty respectively;/(G|g) is the number of bits the outline of the Subdue system. Subdue takes as input a

required to encode the graph obtained by compreséing graphical databasé, and then three parameters to control
with g, i.e. substituting each occurrence @fin G by a the search process.

single node [15]. The extracted subgraphs represent stalct
concepts in the data. Subdue can be run several times iBa Multiobjective Optimization Basics

sequence in order to extract different meta-concepts fl@mt - A follows, we describe some MOO basics and general

previously simplified database. After multiple Subdue rungaiations used throughout the paper. A general MOO prob-
on the database, we can discover a hierarchical descriptilyy can be described as a vector functjothat maps a tuple

of the structural regularities in the data [16]. Supdue. CaPf | parameters (decision variables) to a tuple abjectives
also use background knowledge, such as domam-orlentﬁﬂ [5]. Formally:
S

expert knowledge, to be guided and to discover subgrap
for a particular domain goal. The algorithm performs the
subgraph discovery in polynomial time. In the last fifteen min./max.y = f(z) = (fi(z), f2(x), ..., folx))

years, it has been successfully applied for many real-world  sypject tox = (21, 25,...,2;) € X )
problems including, bioinformatics [17], counter-teison

[2], web data mining [18], geology [19], and aviation and y=ny - v0) €Y

chemistry [20], among others. where z is called the decision vectof is the parameter
space,y is the objective vector, and” is the objective
1) SUBDUE (Graph databasé/, BeamWidth, MaxBest, Limit) space. To compare any two solutions, we apply the well

2) ParentList ={Vertexv — v has a unique label in graph
3) Evaluate all the unique vertices
4) BestList = UpdateBestList(ParentList) //Restrict to dizaxBest

known concept of Pareto dominance: assume, without loss
of generality, a maximization problem, and consider two

5) ProcessedParents = 0 solutionsz! and z? with vector-valued objective functions
6) while ProcessedParents Limit and ParentList£ 0 do y' and 32 respectively. An objective vectoy! is said to
7)  ChidList={} weakly dominate another objective vectgt (y! >~ %2)

8  while Parentlist# 0 do if no component ofy! is smaller than the corresponding

9) Parent = RemoveHead(ParentList) 9 .

10) CandidateList = ExtendSubgraph(Parent) component ofy® and at least one cor_npon_ent is greater.

11) Evaluate subgraphs in CandidateList Accordingly, we can say that a solutian' is better to

12) ChildList = UpdateChildList(CandidateList) // Restrict to sjze another solutionz?, i.e., ' dominatesz? (z! > z?),
BeamWidth if f(x!) dominatesf(z?). Mathematically, the concept of

13) ProcessedParents = ProcessedParents+1

) Pareto optimality is defined as follows:
14) end while

15) BestList = UpdateBestList(ChildList) /Restrict to siztaxBest
16) ParentList = ChildList

. 1 2
17) end while Vie{1,2,...,0}: fi(z") = fi(z*)A
18) Return BestList // Discovered subgraphs dj e {17 2,... ,U} : fj (551) > fj (5C2) )
Fig. 1. The outline of Subdue algorithm. Hence, optimal solutions, i.e., solutions not dominated by

any other solution, may be mapped to different objective
Like many GBDM algorithms, Subdue models the searchectors. In other words, there may exist several optimal
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objective vectors representing different trade-offs leew several conflicting goals representing different user gyref
the objectives. ences.

In a typical MOO problem there is not usually a single To do so, we have selected Subdue [10], [11], the first
optimal solution to solve the problem, (i.e., being betteand the most classical graph-based knowledge discovery
than the remainder with respect to every objective, as isystem, and have extended it to deal with the latter scenario
single objective optimization) but a set of optimal solago by incorporating a Pareto-based evolutionary multiolject
that are superior to the remainder (are not dominated pmponent [22], [23] to the selection strategy of Subdue in
them) when all the objectives are jointly considered. Thesarder to decide the search direction to be explored, i.e., to
solution vectors are known as nondominated, efficient dhe decision on which of the subgraphs in ChildList will
Pareto optimal and constitute the so-called nondominatechmpose ParentList in the next iteration (see Section II).
efficient or Pareto optimal solutions set. Their set of ofdjec In the next subsection we provide the novel MultiObjective
vectors is called nondominated, efficient or Pareto front. Subdue (MOSubdue) proposal.

I1l. M ULTIOBJECTIVE SUBDUE STRUCTURE AND B. Proposal
OPERATION MODE Towards applying preferences in subgraph discovery using
This section justifies the need of handling several prefUPdue, every subgraph can be jointly evaluated consglerin

erences simultaneously in any GBDM algorithm and lateiV0 Objective functions: (i) the support (the occurrence

describes the implementation of Subdue for multiobjectivif€auency of the subgraph in the whole graph daté),
subgraph discovery. and (ii) the complexity or size (the number of vertices and

edges present in the subgraph These objectives can be
A. Justification for MOO in GBDM calculated as:

The fact that the existing GBDM techniques apply a
single objective search has many limitations such as we valueyppordg, G) = #subgraphs irG matchingg  (4)
risk a huge (very few) subgraphs in the case of weak ) _ i
(strict) preference value. For example, the formulation of valuGompieny(, ) = #verticegg) + #edgegy) ®)
the search problem considering a single criterion like th&he higher the support and size of a subgraph, the larger its
usual subgraph occurrence frequency (i.e., the suppottjdvo importance since more frequent subgraphs represent sounde
normally result in the generation of small subgraphs with asights while larger subgraphs are associated to more
large extent. These subgraphs may not be very informativencise (and thus more difficult to uncover) descriptions.
and as a consequence of being very basic a user may notHeerefore, the best possible subgraphs are the ones that
able to uncover any new knowledge from them. Moreover, iare maximized both in support and size. Nevertheless, the
real-life applications a user is generally interested ining  problem is that both objectives are conflicting, as simpler
a graph-based repository with several preferences whickescriptions are usually the most frequent ones wicd
are actually meaningful to her/him. These preferences aversa Thanks to the proposed extension, we will be able to
often conflicting in nature. For example, users are normallsetrieve a Pareto set of nondominated, meaningful subgraph
interested in the discovery of subgraphs with high suppoftom a structural database in a single run of the algorithm,
and complexity. These objectives are conflicting, as simplshowing different optimal trade-offs between support and
descriptions are usually the most frequent ones wiceé complexity. Hence, MOSubdue will allow us to uncover
versa One simple approach to apply an existing GBDMcohesive subgraphs comprising even a moderate number of
algorithm to the latter scenario is to combine several Gate observations (and not only the most frequent ones, as usual)
into a single-objective function by any kind of objectivewhich describe the underlying phenomena from different
aggregation scheme. However, the aggregation of two coangles, revealing novel information that otherwise woudd b
flicting criteria (.9, subgraph support and size) in a singleconcealed by uninformative frequent descriptions.
objective scalar function would result in a similar behavioFig. 2 shows the outline of the MOSubdue algorithm.
where only the specific subgraphs showing the speciffidOSubdue considers a Pareto-based multiobjective selec-
trade-off between the two objectives, explicitly or imjitlie  tion strategy on the opposite to the usual Subdue’s single
specified in the aggregation function, would be retrievedbjective operation mode for subgraph discovery. Basicall
In view of the reasons stated above, any successful GBDMOSubdue replicates all the processes of original Subdue
methodology should not only rely on the optimization of asuch as initial parent generation, parent expansion, and
single criterion but also consider simultaneously adddip child generation. Besides, MOSubdue applies Subdue’s beam
conflicting criteria to extract better defined concepts Hasesearch in order to constrain the search space of subgraphs.
on the size of the subgraph being explained, the numbés in classical Subdue, the beam search limits the size of
of retrieved subgraphs, and their diversity. With that aim i ChildList using the parametdseamWidth However, in our
mind, in this paper we propose the incorporating of Paret@ase the selection of subgraphs in ChildList is performed
based search strategies to graph mining techniques in ordsr implementing the well known concept of Pareto domi-
to allow them to handle the simultaneous optimization ofhance in order to guide the search towards discovery of the
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1) MOSUBDUE (Graph, BeamWidth, ParetoArchiveSize, Limit) 1) Begin: ChildList subgraphs with support and complexity values.
2) ParentList ={Vertexv — v has a unique label in graph 2) for each subgraply € ChildList do
3) Estimate support and complexity of all the unique vertices 3) Zy=0andng, =0
4) ParetoArchiveList = UpdateParetoArchive(ParentList) //stores only nondom- 4) for each subgraply’ € ChildList, g # g’ do
inated subgraphs 5) if g = g’ then// g dominatesg’
5) ProcessedParents = 0 6) Zg=Z4U{g’} Il Addd ¢’ to the dominated set aof
6) while ProcessedParents Limit and ParentList# @ do 7) else ifg’ = g then // g’ dominatesg
7) ChildList = {} 8) ng =ng + 1// Increment domination counter gf
8) while ParentList# () do 9) end if
9) Parent = RemoveHead(ParentList) 10) end for
10) CandidateList = ExtendSubgraph(Parent) 11) if ng = 0 then // g belongs to the first front
11) Estimate support and complexity of subgraphs in CandidateList 12) grank = 1 /I Assign dominance rank tg
12) ChildList = UpdateChildList(CandidateList) 13) Fy, U {g} /Il Add g to the first front
13) ProcessedParents = ProcessedParents+1 14) end if
14) end while 15) end for
15) Rank subgraphs in ChildList using nondominated sorting 16) r=1
16) ParetoArchiveList = UpdateParetoArchive(ChildList) 17) while F,. # 0 do
17) SelectBeamWidthsubgraphs on queue ChildList using dominance rank 18) Q=0
and density estimation 19) for eachg € F. do
18) ParentList = ChildList 20) for eachg’ € Z, do
19) end while 21) ngr =ng —1
20) Return ParetoArchiveList // Discovered nondominated subgraphs 22) if ngs =0 then
23) Glank =1+ 1
Fig. 2. The outline of MOSubdue algorithm. 24) Q=Qu{g"}
25) end if
26) end for
27) end for
nondominated subgraphs, the Pareto set. After terminating2s) r=+r+1
the search, the algorithm reports a set of nondominated 29 Fr=Q
subgraphs stored in an external list, ParetoArchiveLikpse 30) end while S o _
size is controlled by the parameter ParetoArchiveSizee-Pat 31) output : subgraphs in ChildList sorted into different nondominated fropts

toArchiveList is updated at the end of each iteration using
the nondominance criteria (eq. (3)).

The idea of calculating an individual's fitness in the
population on the basis of Pareto dominance to achiews () and the third front is identified. This process continues
an efficient set of solutions has been very successful imtil all the fronts are identified. The steps involved in
the area of evolutionary multiobjective optimization (EMO identifying nondominated fronts in ChildList are shown in
[22], [23]. The nondominated sorting genetic algorithmpFig. 3. Once the fronts are identified, each subgraph is
NSGA-II [12], is one of the most popular EMO algorithm. assigned a scalar fitness (or rank) equal to its nondomimatio
NSGA-II makes use of Pareto dominance approach, whej@vel and ChildList is sorted based on nondomination lavel i
the population is divided into several fronts and the deptthe ascending order of magnitude. The algorithm considers
reflects to which front an individual belongs to. An indivalu subgraphs with rank 1 are the best; subgraphs with rank 2
is assigned a pseudo-dominance rank equal to the froste the second-best; and so on.
number. The selection of an individual in the population is Most state-of-the-art algorithms in EMO take into account
performed using this dominance rank value. In this workdensity information in addition to the dominance criterton
our MOSubdue implementation utilizes this dominance depigbtain a well distributed set of Pareto optimal solutions. T
approach to perform selection of subgraphs in ChildList. guide the search towards a good spread of solutions in the
MOSubdue implements Pareto dominance based fitness pRareto set approximation, MOSubdue incorporates density
cedure in order to assign a scalar fitness value to all theformation into the selection process of population v
subgraphs in ChildList. This is done by identifying diffate uals: an individual's chance of being selected is decreased
nondominated fronts in ChildList. Initially, for each subgh according to the density of individuals in its neighborhood
we calculate two elements: a) domination couny, the In this study we use density information in addition to the
number of subgraphs which dominate the subgrapand dominance criterion to select subgraphs in ChildList ineord
b) Z, a set of subgraphs that the subgraph dominates. Ath compose ParentList for the next extention step. The tensi
the subgraphs with domination count zero compose the figtformation is calculated among the subgraphs belong to any
nondominated froni’;. Then, for each subgraph with, = particular nondominated front, i.e. having identical demi
0, we visit each memberg) of its setZ, and reduce its nance rank. This additional density information represent
domination count by one. In doing so, if for any member the diversity of subgraphs belonging to that nondominated
the domination count becomes zero, we put it in a separdt®nt and it is used to select the most diversified subgraphs.
list Q. These members belong to the second nondominat&dr this purpose, we employ the density estimation method
front F;. The above procedure is repeated with each membproposed in the NSGA-II algorithm [12]. This method does

Fig. 3. Nondominated sorting in MOSubdue algorithm.
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1) Begin: Nondominated sef” reporting the considered EMO metrics. Later, the whole

2) m = |F| / Number of subgraphs i experimental analysis is given.

3) for each subgraply do

4) F[g]distance= 0 // Initialize distance A. Web sites analysis dataset

5) end for

6) for objectivek € {Support, Complexity do This database is available online at Subdue wehsitee

7)) F =sor(F,k) data were extracted from real World Wide Web pages and

i) fF[”diia";t: F[”]dlisla;%: o0 /I Assign maximum distance value | \yare transformed to labeled graphs using a web robot [13].
) forg=2to(n—1)do In this work, we have considered ProfStu graph data which

10 £y Flolasance = Flglasancet (Flg 11k = Flo =114/ (¢ was generated using professor and student web sites. The

11)  end for information these graphs contain is hyperlink structurd an

12) end for page’s content. The data consist of 47 graphs, which are
. . .‘ quite complex containing several unique vertex labels. We
Fig. 4. Density estimation. consider this real world database as a challenging way to

illustrate our multiobjective approach. Instead of demlin

) ) ) with each of the huge graphs individually as done in [13],
not requireany user-defined parameter for calculating tthe selected five graphs (numbered 6, 19, 25, 43, and 45)

diversity of subgraphs. The density of subgraphs surreundi o the ProfStu database and joined them into a single
a particular subgraph in ChildList is calculated as the@yer ysiapase with a complexity of 832 vertices, 885 edges, and
distance of the subgraphs on either side of this subgragij ynique labels. For this database, the true Pareto set
along both the preferences, i.e. support and complexitis Thg 6t known due to its large complexity and real-world
distance computation is done by sorting ChildList accadingaiyre. For comparison purposes, we have used a pseudo-
to the first objective function (i.e. support) value in astiag optimal Pareto set, which is obtained as a fusion of all
order of magnitude. The subgraphs with smallest and largegf nondominated sets achieved by both the algorithms in
objective function values are assigned an infinite distanGferent runs. This pseudo-optimal Pareto set contains 8

value. All other intermediate subgraphs are assigned a dissndominated subgraphs that are distinct in the objective
tance value equal to the absolute normalized difference {Rcior space.

the objective function values of two adjacent subgraphss Th
calculation is then continued with the other objective tisit  B. Experimental setup

(i.e. comple>.<ity.)..The oyerall distance value is caI(_:lﬂiam Here, we first provide the use of the original Subdue
the sum of individual distance values corresponding t0 OWigorithm for generating a set of nondominated subgraphs
twg objgctwes. The objec.t|ve functions are normalizedb®f ", qer to compare the performance with our MOSubdue
doing distance computation. proposal. Next the parameter values, and the considered

Fig. 4 gives the outline of density estimation in the Seberformance metrics are presented.
F. Flgl.k, k € {support, complexity refers to thek 1) Nondominated subgraphs using basic Subdiie
preference of subgraply in set ' and the parameters cyrrent version of Subd@esupports three subgraph evalu-
pocand fi'" the maximum and minimum values ation metrics, viz. MDL, support and size. We run Subdue
preference. After all the subgraphs in s€tare assigned with each evaluation metric on the database that outputs
a distance metric, we can compare two subgraphs for thedestList (last line, Fig. 1), whose size is setNtaxBest=
extent of proximity with other subgraphs. A subgraph with &3, |ater, we combine the three BestLists and remove any
smaller value of this distance measure is considered to haNﬂj|tip|e copied subgraphs in order to produce the aggrdgate
a greater density of subgraphs in its neighborhood éicel  set. Finally, we apply the non dominance definition (see
versa To select subgraphs with good diversity in the setq. (3)) on the aggregated set to remove the dominated
F, we prefer subgraphs with higher distance metric valugubgraphs and obtain a baseline nondominated solution set
The ties between subgraphs with equal distance values &jisproximation generated from the single-objective Subdue
resolved arbitrarily. algorithm.

2) Parameter valuesMOSubdue algorithm has been run
IV. EXPERIMENTS ten times with ten different seeds during 1000 seconds. Be-

. . . sides, original Subdue was run during 1000 seconds in which

In .th's section we ana_lyze the behavn_)r of MOS.Ubdugimulatiog of Subdue with each obje%tive was performed for
aIgonthm by means of various unary and binary metr|c§ pr?’333 seconds) 1/3 of the total running time. The maximum
posed in the EMO literature [22], [23], [24], [25], and visua number of nondominated subgraphs that can be reported by

representations of the obtained Pareto fronts. Besides, WROSubdue was set t@aretoArchiveSizes 100. We used
apply Subdue using different objective functions to prcmlucthree different values deamWidthequal to 5, 10, and 20 to

an aggregated Pareto front which is then used for comparirég;|a| e the behavior of our proposed MOSubdue approach
the performance of MOSubdue. Firstly, some introductory y prop PP '
subsections are included to define the experimental designpip:/ailab.wsu.edu/subdue/datasetsiwebdata.tar.gz

by setting up parameters, describing the used database, arfdttp:/ailab.wsu.edu/subdue/software/subdue-5.2.1.zip
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3) Metrics of performancein this paper, we have con- wherel, value is the minimal amourtby which one needs
sidered the two usual kinds of multiobjective metrics [22]to improve each objective, i.e., replaggg’) by fi(g') + €,
[23], [24], [25]: such that it just dominateg(g”), i.e., fi(¢')+€ > fi(g"") for
« those which measure the quality of a nondominatedlli =1,...,0. Avalue ofI.(¢’,¢") < I.(¢",¢') means that
solution set returned by an algorithm, and f(g") dominatesf(¢”’) andI.(X’, X") indicates the minimal
« those which compare the performance of two differer@mounte by which at least one subgraph in the Pareto set
algorithms. approximation X’ dominates at least one subgraph in the
As regards the former group, we use the hypervolum@areto set approximatioR”.
ratio (HVR) and cardinality measure to compare the obtained For a Pareto set approximation, the HVR measure is better
Pareto set approximations. The hypervolume measures tben it tends to one, and the cardinality measure which
volume enclosed by a Pareto set approximation with respgét actually the size of the Pareto set, is better when it
to a reference point. For two-dimensional objective vectotakes higher value. In the pair-wise comparison of Pareto
hyervolume is the summation of area covered by each merget approximations thé' measure is better when it tends to
ber of the Pareto set. In the case of maximization problem, @ge, while the/. measure is better when it takes lower value.
ours, we define a reference point @s0). Here, we use the
hypervolume ratio (HVR) [22]. HVR measures both diversity
and closeness of the Pareto set and is calculated as:

TABLE |
COMPARISON USINGHVR MEASURE.

H; 6 Method BeamWidth= 5  BeamWidth= 10  BeamWidth= 20
HVR= —
Hy ©) Subdue 0.5918 (-) 0.5020 (-) 0.4000 (-)

where H; and H, are the volume of the Pareto set and the MOSubdue 0.9853 (0.0870)  0.6918 (0.0397) ~ 0.4494 (0.0348)
true Pareto set (or the pseudo-optimal Pareto set in case the
latter is not known) respectively. In our case, we will use a
pseudo-optimal Pareto set. A value of HVR equals to one TABLE Il
represents that the Pareto front and the pseudo Pareto front
are equal.
The cardinality is equal to the size of the obtained Pareto
set approximation by an algorithm.
The unary metrics allow us to determine the absolute, Subdue 5() 13 () 11 ()
individual quality of the obtained Pareto set approxinmatio =~ MOSubdue 8.8 (1.6866) 16 (0.0) 22.8 (3.7059)
but they cannot be used for comparison purposes. On the
other hand, binary indicators have been proposed for com-
paring the Pareto set approximations obtained by different TABLE Il
multiobjective algorithms. In this work, we have used the
following two binary indicatorsC' and I. to compare the
Pareto set approximations two by two:

COMPARISON USING CARDINALITY MEASURE

Method BeamWidth= 5 BeamWidth= 10 BeamWidth= 20

C-MEASURE VALUES.

R 3 BeamWidth= 5 BeamWidth= 10 BeamWidth= 20
The coverage metricQ-measure compares a pair Of  wetod  subdue MOSubdue  Subdue  MOSubdue  Subdue  MOSubdue
nondominated sets by computing the fraction of each set that subdue - 0.375 (0) - 0.4286 (0.0) - 0.19 (0.0738)
MOSubdue  1.0000 (0) - 1.0000 (0) - 0.7500 (0.0) -

is covered by the other [26]:

{Vg// c X“;Elg/ c X/ :g/ t g//}| (7)
| X" TABLE IV
I.-MEASURE VALUES.

C(X/,X”) — ‘

whereg’ = ¢” indicates that the subgrapgh dominates or
cover the subgraph” in a maximization problem. A value

of C(X',X") = 1 means that all the subgraphs Mi” are  yes  swde. wosuie  swdie  Mosubdse  subde . MoSubdue
dominated or covered by the subgraphsXih Subdue - 2.2109 (0.1306) - 1.5714 (0.0) E 15714 (0.0)
Yy
The I.-measure gives the minimum distance by which ong"osw®e 100000 : 10000 ©) - 1.0803 (0.0498)

set can be translated in each dimension in objective space
such that the other set is weakly dominated [25]. In this
paper, we consider the additive epsilon indicatr,given C. Analysis of results

as: The results using the two unary metrics, HVR and cardi-
nality are given in Tables | and |l respectively. The values
L(X', X"y = min{fi(¢') + € > fi(g"); shown are the average and standard deviation of the ten
<, . . , performed runs for the MOSubdue approach. The two binary
geXi,gheX fori=1,...0} metricsC and I, calculate the dominance degree for a pair

(8)  of the Pareto set approximations of two algorithms which is
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Subdue

Subdue

Subdue

MOSubdue MOSubdue MOSubdue
BeamWidth5 BeamWidtk10 BeamWidtk20
Fig. 5. Comparison using’-Measure (box-plots).
Subdue Subdue Subdue
MOSubdue MOSubdue MOSubdue
BeamWidth5 BeamWidtk10 BeamWidthk20

Fig. 6. Comparison usind.-Measure (box-plots).

plotted using the box-plots (see Figs. 5 and 6). Each bc
refers to algorithmA in the corresponding row and algorithm
B in the corresponding column and gives the fraction o
B covered byA, C(A,B), in Fig. 5, and the value of the

50

45

40

SUBDUE

MOSUBDUE

REFERENCE SET

o

£

O

35

dominance preserving indicatdt(4, B) in Fig. 6. Besides
the box-plot figures, all the values of tl§ and I. metrics 80 1
are also provided in Tables Ill and IV respectively. 25 |
The results show that the best performance is corre
sponding to the paramet&eamWidthequal to 5, while the
performance worsens for increasing value of BeamWidth
(= 10 and 20), regardless the algorithm. This is probabl

Support (5)

20 4

due to the fact that there is a fixed run time which make 51 e
the larger width search witBeamWidth= 10 and 20 less 0 : : , , . .
productive as there is not enough depth search to get hic 0 20 40 60 80 100 120

quality solutions. Complexily or Size [C)

Our analysis based on the various performance evaluation
metrics clearly demonstrates that the MOSubdue approach
is able to achieve better nondominated solution set than
obtained by Subdue for the web domain database. We will
analyze the results obtained from both unary and binay Subdue, regardless tfeamWidthvalue.
performance evaluation metrics as follows: The analysis of the binary indicatolS,and!, in Tables IlI

The values of HVR reported in Table | show that the Paretand [V, and Figs. 5 and 6 also highlights the better perfor-
set approximations obtained by the MOSubdue algorithimance of the MOSubdue method. The values of¢hand
cover a wide range of values in the objective space and metrics show that the MOSubdue algorithm outperformed
clearly outperform those of the original Subdue. MOSubdu8ubdue. FoBeamWidth= 5, the Pareto set approximations
has obtained the best Pareto front approximation with @@ptained in ten different runs by the proposed approachrcove
average HVR value of 0.9853, which is higher than the HVRII the members of the Pareto set approximation produced by
value of 0.5918 for that produced by Subdue BeramWidth the Subdue method.
= 5. The cardinality measure is based on the size of the Finally, we also compare the performance of our algorithm
Pareto set approximation obtained by an algorithm. Frotmy means of the graphical representation of the Pareto front
Table 1l the MOSubdue approach has produced the Pareipproximations foBeamWidth= 5 and the pseudo Pareto
set approximations with higher cardinality value than thosfront of the database, as shown in Fig. 7. The approximation

Fig. 7. Representation of the nondominated sets.
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of the Pareto front obtained by MOSubdue is a fusion of
the ten different runs. Let us calt; the nondominated front
obtained in tht—;jth run by MOSubdue, the aggregated Pareto
front P = P, U P; U...U Py is the union of the ten
different nondominated sets. Fig. 7 shows that the pseudo
Pareto set dominates two out of four solution in the Paretto sd3]
approximation of Subdue, while the fusioned nondominateq4]
set of MOSubdue is identical to the pseudo Pareto set.

(1]
(2]

(5]
V. CONCLUDING REMARKS

We have proposed a Pareto-based multiobjective seardfl
strategy for subgraph mining in structural databases. The
approach is an extension of the Subdue algorithm called
MOSubdue. The performance of MOSudue has been ana;
lyzed using a real-world web analysis domain taking the
basic Subdue implementation as the baseline.

In view of the obtained results, we can conclude that[9]
MOSubdue is able to discover a set of good quality nondonto]
inated subgraphs in a single run. The analysis of MOSubdue
was based on ten independent runs. Each of the ten cﬁnﬂ
tained Pareto set approximations showed good diversity and
closeness to the pseudo-optimal Pareto set according to fdt?]
performance metrics commonly used in EMO. It is evident
from the results that our proposal clearly outperformed thg3]
basic Subdue implementation when generating nondominated
subgraphs for the problem.

Several ideas for future developments arise from this worki4]
On the one hand, we should notice that, at the start
the search process, the MOSubdue algorithm builds a lar
number of subgraphs belonging to the first nondominated
front whose support decreases as the search progressses.
is due to the start of the search process (line 2, Fig. 27
with the largest support subgraphs and the application of
a constructive search. As MOSubdue implements Subdu?i%]
beam search with a constaBeamWidthparameter, the
algorithm may produce suboptimal approximation sets bit9]
missing out some subgraphs that might allow it to explore
other regions of the search space. One approach to solve {h§
latter drawback may be to use an adapBeamWidthwhich
will take a high value initially and will be decreased using
some adaptation scheme as the search progresses. This il
allow us to explore several subgraphs at the beginning of the
search process. (22]

f
15]
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