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Abstract— In this work we propose a Pareto-based multi-
objective search strategy for subgraph mining in structural
databases. The method is an extension of Subdue, a classical
graph-based knowledge discovery algorithm, and it is thus
called MultiObjective Subdue (MOSubdue). MOSubdue incor-
porates the NSGA-II’s crowding selection mechanism in order
to retrieve a well distributed Pareto optimal set of meaningful
subgraphs showing different optimal trade-offs between support
and complexity, in a single run. The good performance of the
proposed approach is empirically demonstrated by using a real-
life data set concerning the analysis of web sites.

I. I NTRODUCTION

The need of mining structural data to uncover objects or
concepts that relates objects (i.e., subgraphs that represent as-
sociations of features) has increased in the last two decades,
thus creating the area ofgraph-based data mining(GBDM)
[1], [2]. A significant number of applications require a graph-
based representation of structural information such as anal-
ysis of microarray data in bioinformatics, pattern discovery
in a large graph representing a social network, analysis of
transportation networks, and community discovery in Web
data, among many others [3].

Mining graph-based data involves an effective and effi-
cient manipulation of relational graphs, towards discovering
important patterns. Several approaches for knowledge dis-
covery in graph data have been proposed in the literature
including Subdue, the apriori family of methods, frequent
subgraph discovery, Gaston, gSpan, MoFa/MoSS, JoinPath,
CloseGraph, FFSM, Spin, CLOSECUT and SPLAT, gPrune,
etc [3]. Roughly, all the existing methods work by performing
a search in the lattice of all possible subgraphs. The under-
lying search process is usually guided by a single objective
which represents a unique and specific user preference. For
example, the extraction of those subgraphs satisfying some
minimum frequency threshold or of those subgraphs whose
size is less than/equal to some given maximum integer value
are typical choices.

On the other hand, Pareto-based multiobjective evolution-
ary search strategies [4], [5] have recently gained much
importance in data mining and machine learning commu-
nities. This is due to one common benefit observed in the
different multiobjective learning approaches: a deeper insight
into the learning problem can be gained by analyzing a
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Pareto set composed of multiple nondominated solutions with
a different trade-off in the satisfaction of the conflicting
learning problem objectives. Besides, some empirical studies
in [6], [7] have shown that Pareto-based learning approaches
may help the search process underlying the learning al-
gorithm to escape from local optima, thus improving the
accuracy of the learning model. For a recent review on
Pareto-based multiobjective machine learning the interested
reader is referred to Jin and Sendhoff [8]. The edited book
by Jin [9] also constitutes a very good snapshot of the area.

In this paper we propose the incorporation ofPareto-based
multiobjective search strategies[4], [5] to graph mining
techniques in order to allow them to handle the simultaneous
optimization of several conflicting goals representing differ-
ent user preferences. To do so, we have selected Subdue [10],
[11], the first and the most classical graph-based knowledge
discovery system, and have extended it to deal with the
latter scenario. This issue has been tackled by incorporating
a Pareto-based multiobjective component proposed in the
nondominated sorting genetic algorithm (NSGA-II) [12] to
the selection strategy of Subdue in order to decide the
search direction to be explored. This method has been called
MOSubdue (Multiobjective Subdue).

The subgraph discovery process of MOSubdue evaluates
every subgraph by jointly considering two preferences, viz.
support and complexity, in order to explore different search
directions within the multiobjective problem landscape. It is
worth to note that MOSubdue is able to retrieve a Pareto
set of nondominated, meaningful subgraphs from a structural
database in a single run of the algorithm, showing different
optimal trade-offs between support and complexity. In the
current contribution we empirically demonstrate the good
performance of the proposed approach by using a real-life
data set concerning the analysis of web sites [13].

The paper is organized as follows. Section II presents
some preliminaries, including the operation mode of Subdue
algorithm for subgraph discovery, a brief literature survey,
and some basic definitions on multiobjective optimization
related to our work. Section III describes the MOSubdue
methodology. Section IV provides the results obtained by our
algorithm when applied to a real-world web sites database.
Finally, Section V concludes with some discussion.

II. PRELIMINARIES

This section provides the methodological and problem
background used in this work. First, we review the oper-
ation mode of Subdue, and then describe some basics of
multiobjective optimization (MOO) related to our work.
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A. The Subdue Algorithm

Subdue [10], [11] is the first algorithm proposed in GBDM
for discovering interesting and repetitive subgraphs in a struc-
tural database. The algorithm uses the minimum description
length (MDL) principle [14] to discover frequent subgraphs,
extract them, and replace them by a single node in order
to compress the entire database. The maximization of the
description length is considered and suggests how well a
subgraph can compress the input graph. This measure is
a combination of two objectives, support and complexity
(or size), which are commonly used preferences in GBDM
algorithms. The description length of a subgraphg in graph
dataG is computed as:

valueMDL (g, G) = I(G)/(I(g) + I(G|g)) (1)

The description length of a graph is the necessary number
of bits to completely describe the graph;I(G) and I(g)
are the number of bits required to encode the graphG and
the subgraphg respectively;I(G|g) is the number of bits
required to encode the graph obtained by compressingG
with g, i.e. substituting each occurrence ofg in G by a
single node [15]. The extracted subgraphs represent structural
concepts in the data. Subdue can be run several times in a
sequence in order to extract different meta-concepts from the
previously simplified database. After multiple Subdue runs
on the database, we can discover a hierarchical description
of the structural regularities in the data [16]. Subdue can
also use background knowledge, such as domain-oriented
expert knowledge, to be guided and to discover subgraphs
for a particular domain goal. The algorithm performs the
subgraph discovery in polynomial time. In the last fifteen
years, it has been successfully applied for many real-world
problems including, bioinformatics [17], counter-terrorism
[2], web data mining [18], geology [19], and aviation and
chemistry [20], among others.

1) SUBDUE (Graph databaseG, BeamWidth, MaxBest, Limit)

2) ParentList ={Vertex v — v has a unique label in graph}
3) Evaluate all the unique vertices

4) BestList = UpdateBestList(ParentList) //Restrict to sizeMaxBest

5) ProcessedParents = 0

6) while ProcessedParents≤ Limit and ParentList6= ∅ do
7) ChildList = {}
8) while ParentList6= ∅ do
9) Parent = RemoveHead(ParentList)

10) CandidateList = ExtendSubgraph(Parent)

11) Evaluate subgraphs in CandidateList

12) ChildList = UpdateChildList(CandidateList) // Restrict to size

BeamWidth

13) ProcessedParents = ProcessedParents+1

14) end while
15) BestList = UpdateBestList(ChildList) //Restrict to sizeMaxBest

16) ParentList = ChildList

17) end while

18) Return BestList // Discovered subgraphs

Fig. 1. The outline of Subdue algorithm.

Like many GBDM algorithms, Subdue models the search

process in the lattice of all possible subgraphs. In order
to conceptually arrange all the subgraphs in this lattice, it
begins with the set of subgraphs (ParentList) containing all
uniquely labeled vertices (that is, each subgraph represents
one uniquely labeled vertex). To traverse the lattice, Subdue
extends each subgraph from ParentList in all possible ways
either by a single edge and a vertex or by a single edge only
if both vertices are already in the subgraph. These subgraphs
are kept on a queue (ChildList) and are ordered based on their
ability to compress the graph, measured by the MDL index.
This queue can grow exponentially as the search progresses.
In order to avoid that exponential explosion, Subdue uses
a variant of beam search [21] based on selecting and only
storing the topBeamWidthsubgraphs in ChildList. The
search terminates either upon reaching a user specified limit
on the number of subgraphs extended, or upon exhaustion
of the search space. Once the search process terminates, the
algorithm returns a list of the best subgraphs, BestList, which
can store a maximum ofMaxBestsubgraphs. Fig. 1 shows
the outline of the Subdue system. Subdue takes as input a
graphical databaseG, and then three parameters to control
the search process.

B. Multiobjective Optimization Basics

As follows, we describe some MOO basics and general
notations used throughout the paper. A general MOO prob-
lem can be described as a vector functionf that maps a tuple
of l parameters (decision variables) to a tuple ofo objectives
[4], [5]. Formally:

min./max.y = f(x) = (f1(x), f2(x), . . . , fo(x))
subject tox = (x1, x2, . . . , xl) ∈ X (2)

y = (y1, y2, . . . , yo) ∈ Y

where x is called the decision vector,X is the parameter
space,y is the objective vector, andY is the objective
space. To compare any two solutions, we apply the well
known concept of Pareto dominance: assume, without loss
of generality, a maximization problem, and consider two
solutionsx1 and x2 with vector-valued objective functions
y1 and y2 respectively. An objective vectory1 is said to
weakly dominate another objective vectory2 (y1 ≻ y2)
if no component ofy1 is smaller than the corresponding
component ofy2 and at least one component is greater.
Accordingly, we can say that a solutionx1 is better to
another solutionx2, i.e., x1 dominatesx2 (x1 ≻ x2),
if f(x1) dominatesf(x2). Mathematically, the concept of
Pareto optimality is defined as follows:

∀i ∈ {1, 2, . . . , o} : fi(x1) ≥ fi(x2)∧
∃j ∈ {1, 2, . . . , o} : fj(x1) > fj(x2) (3)

Hence, optimal solutions, i.e., solutions not dominated by
any other solution, may be mapped to different objective
vectors. In other words, there may exist several optimal

464



objective vectors representing different trade-offs between
the objectives.

In a typical MOO problem there is not usually a single
optimal solution to solve the problem, (i.e., being better
than the remainder with respect to every objective, as in
single objective optimization) but a set of optimal solutions
that are superior to the remainder (are not dominated by
them) when all the objectives are jointly considered. These
solution vectors are known as nondominated, efficient or
Pareto optimal and constitute the so-called nondominated,
efficient or Pareto optimal solutions set. Their set of objective
vectors is called nondominated, efficient or Pareto front.

III. M ULTIOBJECTIVE SUBDUE STRUCTURE AND

OPERATION MODE

This section justifies the need of handling several pref-
erences simultaneously in any GBDM algorithm and later
describes the implementation of Subdue for multiobjective
subgraph discovery.

A. Justification for MOO in GBDM

The fact that the existing GBDM techniques apply a
single objective search has many limitations such as we
risk a huge (very few) subgraphs in the case of weak
(strict) preference value. For example, the formulation of
the search problem considering a single criterion like the
usual subgraph occurrence frequency (i.e., the support) would
normally result in the generation of small subgraphs with a
large extent. These subgraphs may not be very informative
and as a consequence of being very basic a user may not be
able to uncover any new knowledge from them. Moreover, in
real-life applications a user is generally interested in mining
a graph-based repository with several preferences which
are actually meaningful to her/him. These preferences are
often conflicting in nature. For example, users are normally
interested in the discovery of subgraphs with high support
and complexity. These objectives are conflicting, as simpler
descriptions are usually the most frequent ones andvice
versa. One simple approach to apply an existing GBDM
algorithm to the latter scenario is to combine several criteria
into a single-objective function by any kind of objective
aggregation scheme. However, the aggregation of two con-
flicting criteria (e.g., subgraph support and size) in a single-
objective scalar function would result in a similar behavior
where only the specific subgraphs showing the specific
trade-off between the two objectives, explicitly or implicitly
specified in the aggregation function, would be retrieved.
In view of the reasons stated above, any successful GBDM
methodology should not only rely on the optimization of a
single criterion but also consider simultaneously additional,
conflicting criteria to extract better defined concepts based
on the size of the subgraph being explained, the number
of retrieved subgraphs, and their diversity. With that aim in
mind, in this paper we propose the incorporating of Pareto-
based search strategies to graph mining techniques in order
to allow them to handle the simultaneous optimization of

several conflicting goals representing different user prefer-
ences.

To do so, we have selected Subdue [10], [11], the first
and the most classical graph-based knowledge discovery
system, and have extended it to deal with the latter scenario
by incorporating a Pareto-based evolutionary multiobjective
component [22], [23] to the selection strategy of Subdue in
order to decide the search direction to be explored, i.e., to
the decision on which of the subgraphs in ChildList will
compose ParentList in the next iteration (see Section II).
In the next subsection we provide the novel MultiObjective
Subdue (MOSubdue) proposal.

B. Proposal

Towards applying preferences in subgraph discovery using
Subdue, every subgraph can be jointly evaluated considering
two objective functions: (i) the support (the occurrence
frequency of the subgraphg in the whole graph dataG),
and (ii) the complexity or size (the number of vertices and
edges present in the subgraphg). These objectives can be
calculated as:

valuesupport(g, G) = #subgraphs inG matchingg (4)

valuecomplexity(g, G) = #vertices(g) + #edges(g) (5)

The higher the support and size of a subgraph, the larger its
importance since more frequent subgraphs represent sounder
insights while larger subgraphs are associated to more
concise (and thus more difficult to uncover) descriptions.
Therefore, the best possible subgraphs are the ones that
are maximized both in support and size. Nevertheless, the
problem is that both objectives are conflicting, as simpler
descriptions are usually the most frequent ones andvice
versa. Thanks to the proposed extension, we will be able to
retrieve a Pareto set of nondominated, meaningful subgraphs
from a structural database in a single run of the algorithm,
showing different optimal trade-offs between support and
complexity. Hence, MOSubdue will allow us to uncover
cohesive subgraphs comprising even a moderate number of
observations (and not only the most frequent ones, as usual)
which describe the underlying phenomena from different
angles, revealing novel information that otherwise would be
concealed by uninformative frequent descriptions.
Fig. 2 shows the outline of the MOSubdue algorithm.
MOSubdue considers a Pareto-based multiobjective selec-
tion strategy on the opposite to the usual Subdue’s single
objective operation mode for subgraph discovery. Basically
MOSubdue replicates all the processes of original Subdue
such as initial parent generation, parent expansion, and
child generation. Besides, MOSubdue applies Subdue’s beam
search in order to constrain the search space of subgraphs.
As in classical Subdue, the beam search limits the size of
ChildList using the parameterBeamWidth. However, in our
case the selection of subgraphs in ChildList is performed
by implementing the well known concept of Pareto domi-
nance in order to guide the search towards discovery of the
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1) MOSUBDUE (Graph, BeamWidth, ParetoArchiveSize, Limit)

2) ParentList ={Vertex v — v has a unique label in graph}
3) Estimate support and complexity of all the unique vertices

4) ParetoArchiveList = UpdateParetoArchive(ParentList) //stores only nondom-

inated subgraphs

5) ProcessedParents = 0

6) while ProcessedParents≤ Limit and ParentList6= ∅ do
7) ChildList = {}
8) while ParentList6= ∅ do
9) Parent = RemoveHead(ParentList)

10) CandidateList = ExtendSubgraph(Parent)

11) Estimate support and complexity of subgraphs in CandidateList

12) ChildList = UpdateChildList(CandidateList)

13) ProcessedParents = ProcessedParents+1

14) end while
15) Rank subgraphs in ChildList using nondominated sorting

16) ParetoArchiveList = UpdateParetoArchive(ChildList)

17) SelectBeamWidthsubgraphs on queue ChildList using dominance rank

and density estimation

18) ParentList = ChildList

19) end while

20) Return ParetoArchiveList // Discovered nondominated subgraphs

Fig. 2. The outline of MOSubdue algorithm.

nondominated subgraphs, the Pareto set. After terminating
the search, the algorithm reports a set of nondominated
subgraphs stored in an external list, ParetoArchiveList, whose
size is controlled by the parameter ParetoArchiveSize. Pare-
toArchiveList is updated at the end of each iteration using
the nondominance criteria (eq. (3)).

The idea of calculating an individual’s fitness in the
population on the basis of Pareto dominance to achieve
an efficient set of solutions has been very successful in
the area of evolutionary multiobjective optimization (EMO)
[22], [23]. The nondominated sorting genetic algorithm,
NSGA-II [12], is one of the most popular EMO algorithm.
NSGA-II makes use of Pareto dominance approach, where
the population is divided into several fronts and the depth
reflects to which front an individual belongs to. An individual
is assigned a pseudo-dominance rank equal to the front
number. The selection of an individual in the population is
performed using this dominance rank value. In this work,
our MOSubdue implementation utilizes this dominance depth
approach to perform selection of subgraphs in ChildList.
MOSubdue implements Pareto dominance based fitness pro-
cedure in order to assign a scalar fitness value to all the
subgraphs in ChildList. This is done by identifying different
nondominated fronts in ChildList. Initially, for each subgraph
we calculate two elements: a) domination countng, the
number of subgraphs which dominate the subgraphg, and
b) Zg a set of subgraphs that the subgraph dominates. All
the subgraphs with domination count zero compose the first
nondominated frontF1. Then, for each subgraph withng =
0, we visit each member (q) of its set Zg and reduce its
domination count by one. In doing so, if for any memberq
the domination count becomes zero, we put it in a separate
list Q. These members belong to the second nondominated
front F2. The above procedure is repeated with each member

1) Begin : ChildList subgraphs with support and complexity values.

2) for each subgraphg ∈ ChildList do
3) Zg = ∅ andng = 0

4) for each subgraphg′ ∈ ChildList, g 6= g′ do
5) if g ≻ g′ then // g dominatesg′

6) Zg = Zg ∪ {g′} // Add g′ to the dominated set ofg

7) else if g′ ≻ g then // g′ dominatesg

8) ng = ng + 1 // Increment domination counter ofg

9) end if
10) end for
11) if ng = 0 then // g belongs to the first front

12) grank = 1 // Assign dominance rank tog

13) F1 ∪ {g} // Add g to the first front

14) end if
15) end for
16) r = 1

17) while Fr 6= ∅ do
18) Q = ∅
19) for eachg ∈ Fr do
20) for eachg′ ∈ Zg do
21) ng′ = ng′ − 1

22) if ng′ = 0 then
23) g′

rank = r + 1

24) Q = Q ∪ {g′}
25) end if
26) end for
27) end for
28) r = r + 1

29) Fr = Q

30) end while

31) output : subgraphs in ChildList sorted into different nondominated fronts

Fig. 3. Nondominated sorting in MOSubdue algorithm.

of Q and the third front is identified. This process continues
until all the fronts are identified. The steps involved in
identifying nondominated fronts in ChildList are shown in
Fig. 3. Once the fronts are identified, each subgraph is
assigned a scalar fitness (or rank) equal to its nondomination
level and ChildList is sorted based on nondomination level in
the ascending order of magnitude. The algorithm considers
subgraphs with rank 1 are the best; subgraphs with rank 2
are the second-best; and so on.

Most state-of-the-art algorithms in EMO take into account
density information in addition to the dominance criterionto
obtain a well distributed set of Pareto optimal solutions. To
guide the search towards a good spread of solutions in the
Pareto set approximation, MOSubdue incorporates density
information into the selection process of population individ-
uals: an individual’s chance of being selected is decreased
according to the density of individuals in its neighborhood.
In this study we use density information in addition to the
dominance criterion to select subgraphs in ChildList in order
to compose ParentList for the next extention step. The density
information is calculated among the subgraphs belong to any
particular nondominated front, i.e. having identical domi-
nance rank. This additional density information represents
the diversity of subgraphs belonging to that nondominated
front and it is used to select the most diversified subgraphs.
For this purpose, we employ the density estimation method
proposed in the NSGA-II algorithm [12]. This method does
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1) Begin : Nondominated setF

2) n = |F | // Number of subgraphs inF

3) for each subgraphg do
4) F [g]distance= 0 // Initialize distance

5) end for
6) for objectivek ∈ {Support, Complexity} do
7) F = sort(F, k)

8) F [1]distance= F [n]distance= ∞ // Assign maximum distance value

9) for g = 2 to (n − 1) do
10) F [g]distance= F [g]distance+(F [g+1].k−F [g−1].k)/(fmax

k −
fmin

k )

11) end for

12) end for

Fig. 4. Density estimation.

not requireany user-defined parameter for calculating the
diversity of subgraphs. The density of subgraphs surrounding
a particular subgraph in ChildList is calculated as the average
distance of the subgraphs on either side of this subgraph
along both the preferences, i.e. support and complexity. This
distance computation is done by sorting ChildList according
to the first objective function (i.e. support) value in ascending
order of magnitude. The subgraphs with smallest and largest
objective function values are assigned an infinite distance
value. All other intermediate subgraphs are assigned a dis-
tance value equal to the absolute normalized difference in
the objective function values of two adjacent subgraphs. This
calculation is then continued with the other objective function
(i.e. complexity). The overall distance value is calculated as
the sum of individual distance values corresponding to our
two objectives. The objective functions are normalized before
doing distance computation.

Fig. 4 gives the outline of density estimation in the set
F . F [g].k, k ∈ {support, complexity} refers to thekth

preference of subgraphg in set F and the parameters
fmax

k and fmin
k the maximum and minimum values ofkth

preference. After all the subgraphs in setF are assigned
a distance metric, we can compare two subgraphs for their
extent of proximity with other subgraphs. A subgraph with a
smaller value of this distance measure is considered to have
a greater density of subgraphs in its neighborhood andvice
versa. To select subgraphs with good diversity in the set
F , we prefer subgraphs with higher distance metric value.
The ties between subgraphs with equal distance values are
resolved arbitrarily.

IV. EXPERIMENTS

In this section we analyze the behavior of MOSubdue
algorithm by means of various unary and binary metrics pro-
posed in the EMO literature [22], [23], [24], [25], and visual
representations of the obtained Pareto fronts. Besides, we
apply Subdue using different objective functions to produce
an aggregated Pareto front which is then used for comparing
the performance of MOSubdue. Firstly, some introductory
subsections are included to define the experimental design
by setting up parameters, describing the used database, and

reporting the considered EMO metrics. Later, the whole
experimental analysis is given.

A. Web sites analysis dataset

This database is available online at Subdue website1. The
data were extracted from real World Wide Web pages and
were transformed to labeled graphs using a web robot [13].
In this work, we have considered ProfStu graph data which
was generated using professor and student web sites. The
information these graphs contain is hyperlink structure and
page’s content. The data consist of 47 graphs, which are
quite complex containing several unique vertex labels. We
consider this real world database as a challenging way to
illustrate our multiobjective approach. Instead of dealing
with each of the huge graphs individually as done in [13],
we selected five graphs (numbered 6, 19, 25, 43, and 45)
from the ProfStu database and joined them into a single
database with a complexity of 832 vertices, 885 edges, and
511 unique labels. For this database, the true Pareto set
is not known due to its large complexity and real-world
nature. For comparison purposes, we have used a pseudo-
optimal Pareto set, which is obtained as a fusion of all
the nondominated sets achieved by both the algorithms in
different runs. This pseudo-optimal Pareto set contains 8
nondominated subgraphs that are distinct in the objective
vector space.

B. Experimental setup

Here, we first provide the use of the original Subdue
algorithm for generating a set of nondominated subgraphs
in order to compare the performance with our MOSubdue
proposal. Next the parameter values, and the considered
performance metrics are presented.

1) Nondominated subgraphs using basic Subdue:The
current version of Subdue2 supports three subgraph evalu-
ation metrics, viz. MDL, support and size. We run Subdue
with each evaluation metric on the database that outputs
BestList (last line, Fig. 1), whose size is set toMaxBest=
33. Later, we combine the three BestLists and remove any
multiple copied subgraphs in order to produce the aggregated
set. Finally, we apply the non dominance definition (see
Eq. (3)) on the aggregated set to remove the dominated
subgraphs and obtain a baseline nondominated solution set
approximation generated from the single-objective Subdue
algorithm.

2) Parameter values:MOSubdue algorithm has been run
ten times with ten different seeds during 1000 seconds. Be-
sides, original Subdue was run during 1000 seconds in which
simulation of Subdue with each objective was performed for
(333 seconds) 1/3 of the total running time. The maximum
number of nondominated subgraphs that can be reported by
MOSubdue was set toParetoArchiveSize= 100. We used
three different values ofBeamWidth, equal to 5, 10, and 20 to
analyze the behavior of our proposed MOSubdue approach.

1http://ailab.wsu.edu/subdue/datasets/webdata.tar.gz
2http://ailab.wsu.edu/subdue/software/subdue-5.2.1.zip
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3) Metrics of performance:In this paper, we have con-
sidered the two usual kinds of multiobjective metrics [22],
[23], [24], [25]:

• those which measure the quality of a nondominated
solution set returned by an algorithm, and

• those which compare the performance of two different
algorithms.

As regards the former group, we use the hypervolume
ratio (HVR) and cardinality measure to compare the obtained
Pareto set approximations. The hypervolume measures the
volume enclosed by a Pareto set approximation with respect
to a reference point. For two-dimensional objective vector,
hyervolume is the summation of area covered by each mem-
ber of the Pareto set. In the case of maximization problem, as
ours, we define a reference point as(0, 0). Here, we use the
hypervolume ratio (HVR) [22]. HVR measures both diversity
and closeness of the Pareto set and is calculated as:

HVR=
H1

H2
(6)

whereH1 andH2 are the volume of the Pareto set and the
true Pareto set (or the pseudo-optimal Pareto set in case the
latter is not known) respectively. In our case, we will use a
pseudo-optimal Pareto set. A value of HVR equals to one
represents that the Pareto front and the pseudo Pareto front
are equal.

The cardinality is equal to the size of the obtained Pareto
set approximation by an algorithm.

The unary metrics allow us to determine the absolute,
individual quality of the obtained Pareto set approximation,
but they cannot be used for comparison purposes. On the
other hand, binary indicators have been proposed for com-
paring the Pareto set approximations obtained by different
multiobjective algorithms. In this work, we have used the
following two binary indicatorsC and Iǫ to compare the
Pareto set approximations two by two:

The coverage metric (C-measure) compares a pair of
nondominated sets by computing the fraction of each set that
is covered by the other [26]:

C(X ′, X ′′) =
|{∀g′′ ∈ X ′′; ∃g′ ∈ X ′ : g′ � g′′}|

|X ′′| (7)

whereg′ � g′′ indicates that the subgraphg′ dominates or
cover the subgraphg′′ in a maximization problem. A value
of C(X ′, X ′′) = 1 means that all the subgraphs inX ′′ are
dominated or covered by the subgraphs inX ′.

TheIǫ-measure gives the minimum distance by which one
set can be translated in each dimension in objective space
such that the other set is weakly dominated [25]. In this
paper, we consider the additive epsilon indicator,Iǫ, given
as:

Iǫ(X ′, X ′′) = min
ǫ
{fi(g′) + ǫ ≥ fi(g′′);

g′ ∈ X ′, g′′ ∈ X ′′, for i = 1, . . . , o }
(8)

whereIǫ value is the minimal amountǫ by which one needs
to improve each objective, i.e., replacefi(g′) by fi(g′) + ǫ,
such that it just dominatesf(g′′), i.e.,fi(g′)+ǫ ≥ fi(g′′) for
all i = 1, . . . , o. A value ofIǫ(g′, g′′) < Iǫ(g′′, g′) means that
f(g′) dominatesf(g′′) andIǫ(X ′, X ′′) indicates the minimal
amountǫ by which at least one subgraph in the Pareto set
approximationX ′ dominates at least one subgraph in the
Pareto set approximationX ′′.

For a Pareto set approximation, the HVR measure is better
when it tends to one, and the cardinality measure which
is actually the size of the Pareto set, is better when it
takes higher value. In the pair-wise comparison of Pareto
set approximations theC measure is better when it tends to
one, while theIǫ measure is better when it takes lower value.

TABLE I

COMPARISON USINGHVR MEASURE.

Method BeamWidth= 5 BeamWidth= 10 BeamWidth= 20

Subdue 0.5918 (-) 0.5020 (-) 0.4000 (-)

MOSubdue 0.9853 (0.0870) 0.6918 (0.0397) 0.4494 (0.0348)

TABLE II

COMPARISON USING CARDINALITY MEASURE.

Method BeamWidth= 5 BeamWidth= 10 BeamWidth= 20

Subdue 5 (-) 13 (-) 11 (-)

MOSubdue 8.8 (1.6866) 16 (0.0) 22.8 (3.7059)

TABLE III

C-MEASURE VALUES.

BeamWidth= 5 BeamWidth= 10 BeamWidth= 20

Method Subdue MOSubdue Subdue MOSubdue Subdue MOSubdue

Subdue - 0.375 (0) - 0.4286 (0.0) - 0.19 (0.0738)

MOSubdue 1.0000 (0) - 1.0000 (0) - 0.7500 (0.0) -

TABLE IV

Iǫ-MEASURE VALUES.

BeamWidth= 5 BeamWidth= 10 BeamWidth= 20

Method Subdue MOSubdue Subdue MOSubdue Subdue MOSubdue

Subdue - 2.2109 (0.1306) - 1.5714 (0.0) - 1.5714 (0.0)

MOSubdue 1.0000 (0) - 1.0000 (0) - 1.0803 (0.0498) -

C. Analysis of results

The results using the two unary metrics, HVR and cardi-
nality are given in Tables I and II respectively. The values
shown are the average and standard deviation of the ten
performed runs for the MOSubdue approach. The two binary
metricsC and Iǫ calculate the dominance degree for a pair
of the Pareto set approximations of two algorithms which is
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Fig. 5. Comparison usingC-Measure (box-plots).

Subdue

MOSubdue

Subdue

MOSubdue

Subdue

MOSubdue

BeamWidth=5 BeamWidth=10 BeamWidth=20

Fig. 6. Comparison usingIǫ-Measure (box-plots).

plotted using the box-plots (see Figs. 5 and 6). Each box
refers to algorithmA in the corresponding row and algorithm
B in the corresponding column and gives the fraction of
B covered byA, C(A, B), in Fig. 5, and the value of the
dominance preserving indicatorIǫ(A, B) in Fig. 6. Besides
the box-plot figures, all the values of theC and Iǫ metrics
are also provided in Tables III and IV respectively.

The results show that the best performance is corre-
sponding to the parameterBeamWidthequal to 5, while the
performance worsens for increasing value of theBeamWidth
(= 10 and 20), regardless the algorithm. This is probably
due to the fact that there is a fixed run time which makes
the larger width search withBeamWidth= 10 and 20 less
productive as there is not enough depth search to get high
quality solutions.

Our analysis based on the various performance evaluation
metrics clearly demonstrates that the MOSubdue approach
is able to achieve better nondominated solution set than
obtained by Subdue for the web domain database. We will
analyze the results obtained from both unary and binary
performance evaluation metrics as follows:

The values of HVR reported in Table I show that the Pareto
set approximations obtained by the MOSubdue algorithm
cover a wide range of values in the objective space and
clearly outperform those of the original Subdue. MOSubdue
has obtained the best Pareto front approximation with an
average HVR value of 0.9853, which is higher than the HVR
value of 0.5918 for that produced by Subdue forBeamWidth
= 5. The cardinality measure is based on the size of the
Pareto set approximation obtained by an algorithm. From
Table II the MOSubdue approach has produced the Pareto
set approximations with higher cardinality value than those

Fig. 7. Representation of the nondominated sets.

by Subdue, regardless theBeamWidthvalue.
The analysis of the binary indicators,C andIǫ in Tables III

and IV, and Figs. 5 and 6 also highlights the better perfor-
mance of the MOSubdue method. The values of theC and
Iǫ metrics show that the MOSubdue algorithm outperformed
Subdue. ForBeamWidth= 5, the Pareto set approximations
obtained in ten different runs by the proposed approach cover
all the members of the Pareto set approximation produced by
the Subdue method.

Finally, we also compare the performance of our algorithm
by means of the graphical representation of the Pareto front
approximations forBeamWidth= 5 and the pseudo Pareto
front of the database, as shown in Fig. 7. The approximation

469



of the Pareto front obtained by MOSubdue is a fusion of
the ten different runs. Let us callPj the nondominated front
obtained in thejth run by MOSubdue, the aggregated Pareto
front P = P1 ∪ Pj ∪ . . . ∪ P10 is the union of the ten
different nondominated sets. Fig. 7 shows that the pseudo
Pareto set dominates two out of four solution in the Pareto set
approximation of Subdue, while the fusioned nondominated
set of MOSubdue is identical to the pseudo Pareto set.

V. CONCLUDING REMARKS

We have proposed a Pareto-based multiobjective search
strategy for subgraph mining in structural databases. The
approach is an extension of the Subdue algorithm called
MOSubdue. The performance of MOSudue has been ana-
lyzed using a real-world web analysis domain taking the
basic Subdue implementation as the baseline.

In view of the obtained results, we can conclude that
MOSubdue is able to discover a set of good quality nondom-
inated subgraphs in a single run. The analysis of MOSubdue
was based on ten independent runs. Each of the ten ob-
tained Pareto set approximations showed good diversity and
closeness to the pseudo-optimal Pareto set according to four
performance metrics commonly used in EMO. It is evident
from the results that our proposal clearly outperformed the
basic Subdue implementation when generating nondominated
subgraphs for the problem.

Several ideas for future developments arise from this work.
On the one hand, we should notice that, at the start of
the search process, the MOSubdue algorithm builds a large
number of subgraphs belonging to the first nondominated
front whose support decreases as the search progresses. This
is due to the start of the search process (line 2, Fig. 2)
with the largest support subgraphs and the application of
a constructive search. As MOSubdue implements Subdue’s
beam search with a constantBeamWidthparameter, the
algorithm may produce suboptimal approximation sets by
missing out some subgraphs that might allow it to explore
other regions of the search space. One approach to solve the
latter drawback may be to use an adaptiveBeamWidthwhich
will take a high value initially and will be decreased using
some adaptation scheme as the search progresses. This will
allow us to explore several subgraphs at the beginning of the
search process.

On the other hand, as already seen, a Pareto-based search
strategy and a diversified subgraph selection can actually
benefit the algorithm in achieving good nondominated set
approximations. However, MOSubdue keeps only applying a
constructive search (line 10, Fig. 2) to expand the subgraphs,
as done by Subdue. That fact causes a bias in the search pro-
cess towards one objective (support) during the exploration.
This indicates an implementation of a pure EMO algorithm
in GBDM could be more useful since the evolutionary
algorithm would perform the exploration of different tree
levels in the subgraph lattice at a given generation, thus not
biasing the exploration towards any particular objective.
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