
Multiple Ant Colony System for Substructure
Discovery

Oscar Cordón1, Arnaud Quirin1, and Roćıo Romero-Zaliz2
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Abstract. A system based on the adaptation of the search principle
used in ant colony optimization (ACO) for multiobjective graph-based
data mining (GBDM) is introduced in this paper. Our multiobjective
ACO algorithm is designed to retrieve the best substructures in a graph
database by jointly considering two criteria, support and complexity.
The experimental comparison performed with a classical GBDM method
shows the good performance of the new proposal on three datasets.

1 Introduction

Graph-based data mining (GBDM) involves an effective and efficient manipula-
tion of relational graphs towards discovering important patterns [13]. It is now
an established area which allowed the solving of a significant number of prob-
lems such as analysis of micro-array data in bioinformatics, pattern discovery
in a large graph representing a social network, and analysis of transportation
networks, among many others [5]. Likewise, Pareto-based multiobjective search
strategies [2] have also gained much importance in data mining and machine
learning communities. That is due to the advantage for the user of retrieving a
Pareto set composed of multiple non-dominated solutions with a different trade-
off in the satisfaction of some conflicting learning problem objectives [11]. Nev-
ertheless, up to our knowledge, the idea of performing GBDM within a multiob-
jective optimization (MOO) framework, which seems to be a natural extension,
has not been widely explored in the specialized literature.

MOO basics are not described in this contribution due to a lack of space,
but the interested reader is referred to [2, 6, 3]. In short, MOO problems are
characterized by several conflicting objectives which have to be simultaneously
optimized [2]. The goal is to find a set of solutions, described by what is called
a decision vector, which are superior to all the reminder and equally preferable
among them, because an improvement in one objective/dimension will degrade
the solution in another one. Those solutions constitute the so-called Pareto-
optimal set or non-dominated solution set.

This contribution is aimed to bridge the latter gap by proposing a multiobjec-
tive ant colony optimization (MOACO) algorithm [9] to perform multiobjective



GBDM. This novel application of MOACO is however quite natural since, as de-
scribed in [8], mining a graph database can be modeled as a search in the lattice
of all possible subgraphs (also called substructures). Hence, considering the use
of an ACO algorithm to perform GBDM is a rather meaningful idea as these
family of metaheuristic approaches are based on building solutions to combina-
torial optimization problems by exploring a construction graph representing the
problem space. In this way, the graph database lattice itself becomes a natural
representation for the construction graph.

The method introduced in this paper is based on the classical multiple ant
colony system (MACS)3 [1], although any other MOACO algorithm could be
considered [9]. Our multiobjective graph mining algorithm, consequently named
multiple ant colony system for substructure discovery (MACSD), is expected to
optimize two conflicting goals (viz. support and complexity) during the evalua-
tion of the discovered subgraphs. In such a way, a Pareto set of non-dominated
and meaningful substructures extracted from a graph database can be found in
a single run.

The good performance of MACSD will be demonstrated when benchmarking
it against the classical Subdue GBDM method [4] in an experimental study
considering an artificial and two real-life datasets. Subdue [4] is one of the most
extended methods in the area of GBDM [13, 8] for tasks as frequent substructure
discovery, graph compression and hierarchical clustering. It is based on a classical
beam search driven by an heuristic, the minimum description length (MDL)
principle.

The paper is organized as follows. Section 2 describes our novel methodology.
Section 3 shows the performance of the MACSD algorithm on the three datasets.
Finally, some conclusions are given in the Section 4.

2 Our Proposal: A Multiple Ant Colony System for
Substructure Discovery

In this section, we will describe the main components of our proposal, based
on the MACS algorithm. To do so, the first subsection is devoted to introduce
the problem representation, i.e., the mapping of the substructure mining task
to a combinatorial optimization problem representation that can be used by the
artificial ants to build solutions. The second subsection will review the generic
structure of our MACSD algorithm. It will also describe some specific issues
related to its customization to the introduced problem representation.

2.1 Problem Representation

The design decisions taken to represent the graph mining task in such a way it
can be tackled by any ACO algorithm are described below. We have followed

3 Notice that, the term Multiple in MACS refers to the handling of multiple objectives
and not to the use of multiple ant colonies.



the standard nomenclature and refer the reader to Dorigo and Stützle’s book [7]
for more information.

Construction graph. As said, the ACO algorithm will take advantage of the fact
that substructure mining is based on exploring a graph (the lattice representing
all possible substructures). Hence, the construction graph traveled by the ants,
GC = (C,L), constitutes a representation of the substructure lattice G = (N,A).
The set of solution components C corresponds to the set of the database graph
arcs A. There is one node ij in the construction graph for each of the existing arcs
between every database graph node (i, j) (at most, |C| = n2). The connections
L fully link the components, i.e., |L| = |C|2. In this way, the construction graph
includes all the possible substructures of the original lattice, i.e. all substructures
have at least a support of 1. A feasible solution S generated by an ant when
traveling GC is a set of arcs (solution components) of any dimension composing
a connected substructure GS .

Constraints. The constraints enforce that a valid connected substructure in-
cluded of the substructure lattice is built. Hence, they will depend on the specific
kind of substructures which are to be extracted from the database (for exam-
ple, they will be different in case we are extracting subgraphs or subtrees). The
constraints are implicitly enforced through the solution construction process fol-
lowed by the ants by properly defining the feasible neighborhood Nk

i of an ant
k in node i at each construction step.

Objective functions. The multiobjective substructure discovery problem deals
with the maximization of the extracted substructures complexity and support.
The final aim is to uncover a non-dominated solution set composed of a variety of
substructures with different trade-offs between complexity and support, which is
not possible if only a single-objective algorithm such as Subdue [4] is considered.

Let S = (NS , AS) be a feasible substructure, with NS ⊆ N being its set of
nodes and AS ⊆ A being its set of arcs. We can mathematically formulate our
two objectives as follows:

f1(S) = Complexity(S) =
|NS |+ |AS |

|NGmax |+ |AGmax |
(1)

f2(S) = Support(S) =
#graphs in G including S

card(G)
(2)

with card(G) being the cardinal of the set of graphs G composing the data base
and Gmax corresponding to a graph in G having highest sum of nodes and edges.

Pheromone trails. The pheromone trails τij have to memorize the preference of
traveling to node ij in the construction graph, i.e., of adding arc (i, j) to the
substructure currently built by the ant. Hence, a pheromone trail is associated
to each construction graph node ij.



Heuristic information. This information is not considered in the current algo-
rithm version.

Solution construction. Every ant produces a single solution to the problem which
corresponds to a specific extracted substructure. The final approximation set
PA built by MACSD will constitute a full solution to the problem since it will
provide the user with a non-dominated set of substructures with different trade-
offs between support and complexity.

To do so, each ant k starts by selecting an initial construction graph node
ij (i.e., an initial database graph arc (i, j)) as its first solution component sk

1 .
Instead of uniformly drawing that node, we consider it to be selected according
to the following probability distribution:

p(ij) =
τij∑

lm∈C τlm
(3)

Therefore, the most visited arcs by the ants in the previous stages of the
search are most likely to be selected as initial arcs for the exploration performed
by the new ants in the current iteration.

Let Sk
h = (sk

1 , . . . , sk
h) be the partial solution (i.e., the partial substructure)

built by ant k after h construction steps. Its feasible neighborhood N(Sk
h) is

composed of every arc (i, j) (every construction graph node ij) such that:

1. (i, j) 6∈ Sk
h.

2. Either i, j, or both of them are included in Sk
h, i.e., they are the head, the

tail, or the head and the tail of some arc included in Sk
h.

2.2 Customization of Multiple Ant Colony System for Substructure
Discovery

The MACS algorithm was first proposed for vehicle routing problems [1] as an
extension of the classical ant colony system (ACS) [7]. To design our MACSD
proposal, we have considered the original definition of MACS and have taken
some additional design decisions, which are described as follows.

External Pareto archive initialization and update. We consider an initial set of
random substructures of size up to SizeM nodes to constitute the initial Pareto
archive. The archive is updated after each single ant move and the dominated
solutions are removed during each update.

Modified solution construction process. We must deal with the problem of not
knowing the size of the optimal solutions in advance. To do so, in each iteration,
a fixed percentage γ of the ants in the colony will build their solutions from
scratch, and the remaining 1 − γ ants will randomly select one solution from
the current Pareto archive and will start their construction process from it. In
addition, at each step, we also decide when to stop the construction process of
each ant according to a probability distribution: pstopping(Sk) = stepk/SizeM,
with stepk being the number of construction steps taken by ant k in the current
iteration.



Transition rule. MACSD uses a single pheromone trail matrix, τ . The following
expression is considered for the transition rule:

ij =
{

arg maxlm∈N(Sk) τlm, if q ≤ q0,

îj, otherwise.
(4)

pk
ij =

{
τijP

lm∈N(Sk) τlm
, if lm ∈ N(Sk),

0, otherwise.
(5)

Pheromone trails update. Every time an ant travels to the node ij, it performs
the local pheromone update as follows: τij = (1− ρ) · τij + ρ · τ0, where ρ is the
rate of pheromone evaporation.

In the original MACS algorithm, the initial value for the pheromone trails
τ0 is calculated from a set of heuristic solutions by taking their average costs,
f̂0 and f̂1, in each of the two objective functions, f1 and f2, and applying the
following expression: τ0 = 1/(f̂0 · f̂1). In our case, we have considered the use
of the set of non-dominated solutions composing the initial Pareto archive PA.
τ0 is then computed from the average values of the latter solutions in the two
optimization criteria, complexity and support, f̂1 and f̂2, respectively, by using
the previous MACS expression. Of course, the τ0 value is recomputed after each
Pareto archive update.

3 Experiments and Analysis of Results

In this section we analyze the behaviour of the MACSD algorithm by means
of various metrics proposed in the EMO literature [3]. Firstly, we describe the
datasets and the parameter values, then we report a comparison with Subdue.

3.1 Datasets

We have used three different application domains, an artificial dataset (shapes)
and two real-world datasets: visual science maps (scientograms) and web pages
(www), which are described as follows:

shapes. This dataset [4] consists of 100 randomly generated stacks of geometrical
objects and has a complexity of 500 nodes, 400 directed edges, and 6 unique
labels.

scientograms. This dataset [12] is comprised by 10 scientograms of the scientific
production of the USA for period 1996-2005 and has a complexity of 2762 nodes,
2769 undirected edges, and 293 unique labels.

www. This real web pages database [10] is available online on the Subdue web-
site4 and has a complexity of 832 nodes, 885 directed edges, and 511 unique
labels which include self-connection edges.
4 http://ailab.wsu.edu/Subdue/datasets/webdata.tar.gz



3.2 Experiments

Subdue was run 3 times, each time using one of its three different criteria as a
goal (namely, complexity, support, and MDL). The results of these three runs
were joined in a single Pareto set approximation (only non-dominated solutions
are kept). We used the default parameters but the number of solutions to be
found was set to 33 for each run, in order to have a maximum of 100 generated
solutions. The MACSD algorithm was run 10 times, as a consequence of being
non-deterministic. Its parameter values are as follows: 3600s. of execution time,
10 ants, SizeM = 3, τ0 = 0.4, ρ = 0.2, q0 = 0.2, and γ = 0.8. For the shapes
dataset, we set up some specific parameters: 300s. of execution time, SizeM
= 5, and q0 = 0.5. Those parameter values were selected from a preliminary
experimentation.

The comparison between the two algorithms will be developed by consid-
ering three classical evolutionary MOO performance indicators (metrics) [6, 3]:
the cardinality of the Pareto set approximation, the area (S) of the Pareto front
approximation, and the coverage (C) of the Pareto fronts obtained by each al-
gorithm over those obtained by the other.

3.3 Results

The results obtained in the application of our MACSD and the Subdue algorithm
to the three previously described datasets are analyzed as follows:

shapes. This dataset is small enough to be checked exhaustively: 31 non-dominated
substructures have to be found, corresponding to only 8 different decision vectors.
Subdue finds 16 of them (with 8 different decision vectors), getting a S-metric
value of 0.108. MACSD finds 21 of them for all its runs, also obtaining the 8 pos-
sible decision vectors and the same S-metric value as Subdue. The comparison
between MACSD and Subdue showed that the fronts are equal (the C-metric
value is 0 in every case) but MACSD achieved a better diversity of solutions.

scientograms. This real-life dataset is more complex than the shapes domain.
The S values for MACSD (0.206 in average on the 10 runs) are better than those
obtained by Subdue (0.177). The C values obtained when comparing MACSD
vs. Subdue (0.94 in all cases) are significantly greater than those obtained when
comparing Subdue vs. MACSD (0.361 in average), meaning that MACSD dom-
inates more solutions from Subdue than in the opposite comparison. Subdue
achieves a higher value of cardinality (35) than MACSD (10.8 in average) as a
consequence of its worst convergence to the optimal Pareto front.

Nevertheless, there are two solutions found by Subdue that MACSD did not
reach, corresponding to subgraphs with the smallest support and the largest
complexity values. The reason probably comes from the small number of ants
allocated to MACSD.



www. This real-life dataset is as complex as scientograms and it also contains
loops over the same node. The S values for MACSD (0.00331 in all cases) are
better than that obtained by Subdue (0.00258). The C values achieved when
comparing MACSD vs. Subdue (0.875 in all cases) are much greater than those
obtained when comparing Subdue vs. MACSD (0.4 in all cases), meaning that
MACSD dominates more solutions from Subdue than in the opposite compari-
son. Again, Subdue gets a higher value of cardinality (8 vs. 5) due to its worst
convergence to the Pareto-optimal front. There is one solution found by Subdue
that MACSD cannot reach, probably for the same reason as before.

Finally, a graphical representation of the aggregated Pareto front approxima-
tions found for each dataset is shown in Fig. 1. Although we clearly identify the
said three solutions (two in scientograms and the other in www) generated by
Subdue which dominate their MACSD counterparts (see the left-most extent of
the Pareto fronts), MACSD extracted better Pareto fronts for both domains and
found bigger substructures than Subdue for the other extent where the largest
possible support value substructures are located.
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Fig. 1. Graphical representations of the Pareto front approximations for the shapes,
scientograms, and www datasets.



4 Conclusion

In this paper, we have shown how the search principle used by ACO can be nat-
urally adapted to perform graph mining. Besides, it has been demonstrated that
its combination with a MOO design (e.g. MACS) in a MOACO-based GBDM
algorithm designed to retrieve the best substructures from a graph database by
jointly considering the support and the complexity can report an outstanding
performance. The proposed method, called MACSD, has outperformed the clas-
sical Subdue GBDM algorithm on three different datasets. As future works, we
plan to design a better heuristic information definition and to test more MOACO
schemes.
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