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Abstract

In [14] we proposed a scheme to generate fuzzy rule-
based multiclassification systems by means of bagging, mu-
tual information-based feature selection, and a multicrite-
ria genetic algorithm for static component classifier selec-
tion guided by the ensemble training error. In the current
contribution we extend the latter component by making use
of the bagging approach’s capability to evaluate the ac-
curacy of the classifier ensemble using the out-of-bag es-
timates. An exhaustive study is developed on the poten-
tial of the two multicriteria genetic algorithms respectively
considering the classical training error and the out-of-bag
error fitness functions to design a final multiclassifier with
an appropriate accuracy-complexity trade-off. Several pa-
rameter settings for the global approach are tested when
applied to nine popular UCI datasets with different dimen-
sionality.

1 Introduction

Multiclassification systems (MCSs) (also called multi-
classifiers or classifier ensembles) have been shown as very
promising tools to improve the performance of single clas-
sifiers when dealing with complex, high dimensional clas-
sification problems in the last few years [28]. This research
topic has become especially active in the classical machine
learning area, considering decision trees or neural networks
to generate the component classifiers, but also some work
has been done using different kinds of fuzzy classifiers (see
section 2.2).

In a previous study [13], we described how fuzzy rule-
based multiclassification systems (FRBMCSs) could be
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generated from classical MCS design approaches such as
bagging [4] and random subspace [23] with a basic, heuris-
tic fuzzy classification rule generation method [25]. Later,
we analyzed how more advanced feature selection ap-
proaches based on the use of mutual information measures
—the classical Battiti’s mutual information feature selec-
tion (MIFS) method [3], a greedy heuristic, and its ex-
tension to a greedy randomized adaptive search procedure
(GRASP) [19]— allowed us to obtain better performing
FRBMCSs [14].

The latter generation approach was embedded into an
overproduce-and-choose strategy [36] with the aim to both
reduce the final multiclassifier complexity and even try to
increase its accuracy by eliminating redundant classifiers.
To do so, we proposed a multicritmulticriteria genetic al-
gorithm (GA) [9] for static component classifier selection
guided by the training error which allowed us to generate
linguistic fuzzy rule-based classification system (FRBCS)
ensembles with different accuracy-complexity trade-offs in
a single run.

The resulting FRBMCS design technique thus belong to
the genetic fuzzy systems family, one of the most success-
ful approaches to hybridize fuzzy systems with learning and
adaptation methods in the last fifteen years [12, 11]. It is
also quite novel in the fuzzy systems area since no previous
work has been done on bagging FRBCSs up to our knowl-
edge.

The aim of the current contribution is to take a step ahead
on those first developments by paying more attention to the
genetic classifier selection stage. To do so, we will make
use of another of the bagging inherent advantages, its abil-
ity to test the accuracy of the ensemble without the need
of removing any pattern from the data set (i.e., no need to
use a validation set) by means of the “Out-Of-Bag” Error
(OOBE) [6]. Hence, a new variant of the multicriteria ge-
netic component classifier selection technique will be pro-
posed by adapting the whole FRBMCS design framework
in order the latter stage can be guided by the OOBE. In
principle, the original fitness function based on the use of
the training error could lead to the generation of overfit-
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ted FRBCS ensembles due to the use of the same patterns
for the individual classifier generation and MCS selection
stages. Proceeding in the former way, the FRBCS ensem-
ble configurations selected by the OOBE-guided GA will
be evaluated on those instances not considered to learn the
component classifiers, i.e., not chosen by the bagging re-
sampling to be included in each bag. We aim to check if the
new GA fitness function will allow us to reduce the possible
overfitting while still being competitive in terms of accuracy
regarding to the initial ensemble.

An exhaustive study will be developed to test the two GA
variants based on the use of the two fitness functions guided
by the classical training error and OOBE, respectively, on
nine popular data sets from the UCI machine learning repos-
itory with different characteristics of dimensionality (i.e.,
with different numbers of examples and features). Several
parameter settings for the global approach (e.g., different
granularity levels for the fuzzy partitions) will be tested and
the performance of the two kinds of genetically selected
FRBMCSs will be compared between them, as well as to
both the individual FRBCSs and the initial FRBCS ensem-
bles.

This paper is set up as follows. In the next section,
the preliminaries required for a good understanding of our
work (popular classifier ensemble design approaches, fuzzy
MCSs, the need of classifier selection, and the existing GA-
based methods to perform it) are reviewed. Sec. 3 recalls
our approach for designing FRBMCSs considering bagging
and feature selection, while Sec. 4 describes the proposed
multicriteria GA for component classifier selection. The ex-
periments developed and their analysis are shown in Sec. 5.
Specifically, an example of the analysis of one chromosome
regarding the FRBCS ensemble accuracy-complexity trade-
off is presented in Sec. 6. Finally, Sec. 7 collects some
concluding remarks and future research lines.

2 Background and related work

This section explores the current literature related to the
generation of a FRBMCS. The techniques used to generate
MCSs and FRBCSs are described in section 2.1 and sec-
tion 2.2 respectively. Some ways to reduce the size of the
ensembles are described in section 2.3. The use of GAs, for
this purpose, is explored in section 2.4.

2.1 Related work on MCSs

A MCS is the result of the combination of the outputs of
a group of individually trained classifiers in order to get a
system that is usually more accurate than any of its single
components [28].

According to the existing literature, there are different
methods to generate a MCS, all of them based on altering

the training process in such way there is disagreement be-
tween the component classifiers. Different taxonomies can
be considered, but it is usually agreed that there is a well
known group comprising approaches considering data re-
sampling to obtain different training sets to derive each in-
dividual classifier, i.e. bagging and boosting:

1. Bagging [4]: In the bootstrap aggregation approach,
the individual classifiers are independently learnt from
resampled training sets (“bags”), which are randomly
selected with replacement from the original training
data set, following the statistical bootstrapping proce-
dure. In this way, bagging must be used in combina-
tion with “unstable” learning algorithms where small
changes in the training set result in large changes in
the predictions given by the classifier [5].

2. Boosting [43]: Boosting is a family of different meth-
ods following the same operation mode: the individual
classifiers are generated sequentially by selecting the
training set for each of them based on the performance
of the previous classifier(s) in the series. Opposed to
bagging, the resampling process gives a higher proba-
bility of selection to the incorrectly predicted examples
by the previous classifiers.

These methods have gain a large acceptance in the ma-
chine learning community during the last two decades due
to their high performance. Decision trees are the most usual
classifier structure considered by them and much work has
been done on the topic, although they can be used with any
type of classifier (the use of neural networks is also very
extended, see for example [35]).

On the other hand, a second group can be found com-
prised by a more diverse set of approaches which induct
the individual classifier diversity using some ways different
from resampling [52]. Feature selection plays a key role
in many of them where each classifier is derived by con-
sidering a different subset of the original features. random
subspace [23], where each feature subset is randomly gener-
ated, is one of the most representative methods of this kind.
Although it was initially proposed for decision tree ensem-
bles, it can be clearly used with any kind of classifier in-
ductor in the same way that resampling approaches. Other
generic approaches considering more advanced feature se-
lection strategies are to be found in [49, 51].

Finally, there are some advanced proposals that can be
considered as combinations of the two groups. The most
extended one could be random forests [6], where the indi-
vidual classifiers are decision trees learnt from a resampled
“bag” of examples, a subset of random variables is selected
at each construction step, and the best split for those se-
lected variables is chosen for that node.

The interested reader is referred to [2, 35] for two re-
views for the case of decision tree ensembles (both) and
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neural networks (the latter), including exhaustive experi-
mental studies. The next subsection reviews the case of the
fuzzy MCSs.

2.2 Previous Work on Fuzzy MCSs

The use of boosting for the design of fuzzy classifier
ensembles has been considered in some works, taking the
weak learners as fuzzy variants of neural networks [37, 50]:
as granular models [38], as neuro-fuzzy systems [45], as
well as single fuzzy rules [16, 24, 40].

However, only a few contributions for bagging fuzzy
classifiers have been proposed considering, fuzzy adap-
tive neural networks [37], fuzzy clustering-based classifiers
[48], and neuro-fuzzy systems [7] as component classifier
structures. Up to our knowledge, no proposal has been
made considering FRBCSs.

Two advanced GFS-based contributions are worthy to be
mentioned. On the one hand, an FRBMCS design tech-
nique is proposed in [1] based on the use of some nich-
ing GA-based feature selection methods to generate the di-
verse component classifiers, and of another GA for clas-
sifier fusion by learning the combination weights. On the
other hand, another interval and FRBCS ensemble design
method based on the use of a single- and multi-objective
genetic rule selection is introduced in [33]. In this case,
the coding scheme allows an initial set of either interval or
fuzzy rules, considering the use of a different features in
their antecedents, to be distributed among different compo-
nent classifiers, trying to make them as diverse as possi-
ble by means of two accuracy and one entropy measures.
Besides, the same authors presented a previous proposal in
[26], where a multi-objective GA generated a Pareto set of
FRBCSs with different accuracy-complexity trade-offs to
be combined into an ensemble.

Finally, some works making use of fuzzy techniques for
classifier ensemble fusion have also been proposed, but they
are out out of the scope of the current contribution.

The next two subsections reviews the techniques used to
optimize the ensemble size.

2.3 Determination of the Optimal Set of
Component Classifiers in the MCS

Typically an ensemble of classifiers is post-processed in
such a way only a subset of them are kept for the final deci-
sion. It is a well known fact that the size of this MCS is an
important issue for its trade-off between accuracy and com-
plexity [2, 35] and that most of the error reduction occurs
with the first few additional classifiers [4, 35]. Furthermore,
the selection process also participates in the elimination of
the duplicates or the poor-performing classifiers.

While in the first studies on MCSs a very small num-
ber (around ten) of component classifiers was considered as
appropriate to sufficiently reduce the test set prediction er-
ror, later research on boosting (that also holds for bagging)
suggested that error can be significantly reduced by largely
exceeding this number [44]. This has caused the use of very
large ensemble sizes (for example comprised by 1,000 indi-
vidual classifiers) in the last few years [2].

Hence, the determination of the optimal size of the en-
semble is an important issue for obtaining both the best
possible accuracy in the test data set without overfitting it,
and a good accuracy-complexity trade-off. In pure bagging
and boosting approaches, the optimal ensembles are directly
composed of all the component classifiers generated until an
specific stopping point, which is determined according to
different means (validation data set errors, likelihood, ...).
For example, in [2] it is proposed an heuristic method to de-
termine the optimal number guided by the “OOBE” error.

However, there is the chance that the optimal ensemble
is not comprised by all the component classifiers first gen-
erated but on a subset of them carrying a larger degree of
disagreement/diversity. This is why different classifier se-
lection methods [15] has been proposed. They could be
mainly grouped in two kinds of strategies. The first one
is named the overproduce-and-choose strategy (OCS) [36],
also known as the test-and-select methodology [47] or the
static strategy [42] in the literature. In this strategy, a large
set of classifiers is produced and then selected to extract
the best performing subset. The second one is named the
dynamic classifier selection approach (DCS) [21]. In this
approach, the accuracy of each classifier surrounding the
region of the feature space where the unknown pattern to
be classified is located is previously estimated, and the best
ones are selected to classify that specific pattern.

GAs have been commonly used for the both strategies as
we will show in the following subsection.

2.4 Related work on genetic selection of
FRBMCSs

GAs are a popular technique used to select the classi-
fiers, especially within the OCS strategy. Usually, perfor-
mance, complexity and diversity measures considered used
as search criteria. Complexity measures are employed to
increase the interpretability of the system whereas diversity
measures are used to avoid overfitting.

Among the different genetic OCS proposals, we can re-
mark the following ones. In [34], a hierarchical multi-
objective GA (MOGA) algorithm, performing feature se-
lection at the first level and classifier selection at the second
level, is presented which outperforms classical methods for
two handwritten recognition problems. The MOGA allows
both performance and diversity to be considered for MCS
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selection. In [22] a GA is used to select from seven diver-
sity heuristics for k-means cluster-based ensembles and the
ensemble size is also encoded in the genome. Even if the ex-
periments conducted on 18 datasets showed that no partic-
ular combination of heuristics have been chosen by the GA
across all the datasets, this study dealt with the three fami-
lies of criteria: performance, complexity and diversity. An-
other extensive comparison between 15 different classifiers,
27 datasets, 7 search methods (among them three evolution-
ary algorithms) and 16 selection criteria (diversity measures
and classifier error) is presented in [39], but the conclusion
does not agree with the other studies: the diversity measures
seem not to be useful to improve the error rate. In the study
of Martı́nez-Munoz et al. [31], a GA is compared to five
other techniques for ensemble selection. Even if the per-
formance of the GA was the worst obtained, they showed
that while selecting a small subset of classifiers, the gen-
eralization error was significantly decreased. In [20], the
authors developed a multidimensional GA to optimize two
weight-based models, in which the weights are assigned to
each classifier or to each class. They applied their system
to 6 different classifiers (only linear and quadratic classi-
fiers are explored), but on only two small datasets and with-
out comparing to the results obtained on a single classi-
fier. Another study [27] aimed to develop a weighted-based
GA for combining diverse classifiers, driven from machine-
learning techniques or human experts. The authors obtained
promising results, but they applied their methodology only
on a small dataset, due to the difficulty of collecting a large
expert dataset. Our own previous studies [14, 13] also con-
sider a multicriteria GA for the ensemble selection in an
OCS fashion, with performance (training error) and com-
plexity as criteria to guide the GA.

Some conclusions drawn in the cited papers are similar
to all of them: in general, the performance obtained after
the genetic selection of an ensemble outperforms the initial
MCS, while quite drastically simplifying the system. But in
all of them, the error rate is measured on the initial train-
ing set or a pre-defined validation set. The aim of the cur-
rent contribution is to analyze a new selection methodology
based on the use of the OOBE to select the ensembles by the
means of a GA, taking advantage of the bagging approach.

The other strategy, the DCS approach, is still less ex-
tended in the specialized literature. One of the available
studies, presented in [41], is a comparison of a single-
objective GA and a MOGA for 14 different objective func-
tions of the mentioned three families of criteria (12 diversity
measures, the training error, and the number of classifiers as
a complexity measure). The authors applied their study on
only one dataset, a digit handwritten recognition problem
with 10 classes and 118,735 instances. They conclude say-
ing that the training error is the best criterion for a single
GA and a combination of training error and one diversity

measure is the best criterion for a MOGA. In [42], the two
OCS and DCS strategies are combined to form a dynamic
overproduce-and-choose strategy to allow, respectively, the
generation of a set of highly accurate ensembles, and to se-
lect the one with the highest degree of confidence, in a two-
step process. This strategy outperforms both a static strat-
egy and the initial ensemble of classifiers on seven datasets.
In [18], the authors proposed a GA selecting the votes of
each classifier in an ensemble for its reliability to classify
each class, instead of discarding the classifiers at a whole.
They obtained good results with respect to static strategies,
but they tested their proposal on only one application. In
[30], an ensemble of neural networks are evolved using an
evolutionary algorithm based on negative correlation, in or-
der they learn different parts of the training set. Very com-
petitive results are presented, but in only two datasets.

We can also notice that GAs are also popular techniques
for feature selection. For instance, in [49], a GA is com-
pared to four other techniques for feature selection on a high
number of datasets (21) and using different diversity mea-
sures. For all the experimentations, the GA outperformed
the remaining methods regarding the MCS test accuracy.

3 Bagging and feature selection-based
FRBMCSs

In this section we will both detail how the individual
classifiers and the FRBMCSs are designed. Fig. 1 shows the
framework of the whole approach. A normalized dataset is
split into two parts, a training set and a test set. The training
set is submitted to an instance selection and a feature selec-
tion procedure in order to provide individual training sets
(the so-called bags) to train simple FRBCSs (through the
method described in section 3.1). The instance selection
and the feature selection procedures are described in sec-
tion 3.2. After the training, we got an initial MCS, which
is validated using the training and the test errors (Ensem-
ble Training Error and Ensemble Test Error), as well as a
measure of complexity based on the total number of rules
in the FRBCSs. This ensemble is selected using a GA (de-
scribed in section 4) using either the Training Error or the
OOBE. The final MCS is validated using different accuracy
(Training Error, OOBE, Test Error) and complexity mea-
sures (number of classifiers, total number of rules).

3.1 Individual FRBCS composition and
design method

The FRBCSs considered in the ensemble will be based
on fuzzy rules with a class Cj and a certainty degree CFj

in the consequent:
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Figure 1. Our framework: after the instance
and the feature selection processes, the indi-
vidual FRBCSs are learned. Finally, they are
selected by a GA to compose the FRBMCS
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and they will take their decisions by means of the single-
winner method, which gives as classifier output the class
associated to the rule with the largest value for the product
of its firing degree and the certainty degree [10, 25]. This
fuzzy reasoning method has been selected due to its high
simplicity and interpretability. The use of other more ad-
vanced ones [10] is left for future works.

To derive the fuzzy knowledge bases, one of the heuristic
methods proposed by Ishibuchi et al. in [25] is considered.
All the fuzzy rule derivation methods in this family start
from a fuzzy partition definition for each variable, and are
based on generating a fuzzy rule Rj for each fuzzy input
subspace Aj where at least a training example is located.
The consequent class Cj and certainty degree CFj are sta-
tistically computed from all the examples located in the spe-
cific subspace D(Aj) (grid-based methods, see [8]).

In the chosen method, Cj is computed as the class h

with maximum confidence according to the rule compati-
ble training examples D(Aj) = {x1, . . . , xm}. That confi-
dence value for every class is computed as:

c(Aj ⇒ Class h) =
|D(Aj)

T

D(Class h)|
|D(Aj)|

=

=
P

p∈Class h µAj
(xp)

P

m
p=1

µAj
(xp) ; h = 1, 2, ..., M ;

CFj is obtained as the difference between the confidence
of the consequent class and the sum of the confidences of
the remainder (called CF IV

j in [25]):

CFj = c(Aj ⇒ Class Cj)−
m∑

h=1;h6=Cj

c(Aj ⇒ Class h).

This method is good for our aim of designing FRBMCSs
since it is simple and quick. Besides, we experimentally
checked it fulfils the most important requirement for creat-
ing an ensemble, that of being unstable enough to generate
uncorrelated classifiers when run on different bootstrapped
samples of a training set.

However, it carries some drawbacks. The first one is
that of generating an excessive number of rules, which will
make impossible to run it on pure bagging approaches with-
out feature selection when the number of problem attributes
and the granularity are high.

On the other hand, it is well known that heuristic, data-
driven fuzzy classification rule generation methods result
in FRBCSs with a low accuracy by themselves, which will
also affect the final accuracy of the generated FRBMCSs.
Even so, we prefer considering it in this study due to the
said advantages.

3.2 FRBMCS design approaches

In this contribution we are applying a bagging approach
combined with a feature selection method in order to gener-
ate FRBMCSs [14]. Three different feature selection meth-
ods, random subspace and two variants of Battiti’s MIFS,
greedy and GRASP, are considered.

As said before, random subspace [23] is a method in
which we select randomly a set of features from the orig-
inal dataset. The greedy Battiti’s MIFS method [3] is based
on a forward greedy search using the Mutual Information
measure [46], with regard to the class. This method selects
the set S of the most informative features about the output
class which cannot be predicted with the already selected
features. The Mutual Information I(C, F ) for a given fea-
ture F is defined as:

I(C, F ) =
∑

c,f

P (c, f) log
P (c, f)

P (c)P (f)
(1)

where P (c), P (f) and P (f) are respectively the values of
the density function for the class and the feature variables,
and the joint probability density. In the MIFS method, we
select as a first feature f , the one that maximizes I(C, f),
and then the features f that maximize Q(f) = I(C, f) −
β

∑
s∈S I(f, s), until S reaches the desired size. β is a

coefficient to set up the penalization on the information
brought by the already selected features.

The MIFS-GRASP variant is an approach where the set
is generated by iteratively adding features randomly cho-
sen from a Restricted Candidate List (RCL) composed of
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the best τ percent decisions according to the Q measure.
Parameter τ is used to control the amount of randomness
injected in the MIFS selection. With τ = 0, we get the
original MIFS method, while with τ = 1, we get the ran-
dom subspace method.

For the bagging approach, the bags are generated with
the same size as the original training set, as commonly done.
In every case, all the classifiers will consider the same fixed
number of features.

Finally, no weights will be considered to combine the
outputs of the component classifiers to take the final MCS
decision, but a pure voting approach will be applied: the
ensemble class prediction will directly be the most voted
class in the component classifiers output set.

4 A multicriteria genetic-based MCS selec-
tion method

As described in section 2.3, several studies have demon-
strated most of the gain in a MCS’s performance comes in
the first few classifiers combined [2, 35], and several pro-
posals have been made either to determine when enough
component classifiers have been generated for the ensem-
ble or to select a subset of them with a large degree of dis-
agreement. In the current contribution we propose to use
a multicriteria GA in order to be able not only to obtain a
single solution, i.e., a classifier ensemble composition, but
a list of possible MCS designs, ranked by their quality, from
a single chromosome.

In in one of our previous studies [13], we used this GA
approach considering the likelihood instead of the training
error as the fitness function guiding criterion, as it seems to
be more appropriate when basic feature selection methods
are used. In this extension of the study published in [14], we
are comparing two approaches for the fitness function. In
the first one, we use the same training set as the one used to
generate the bags on which each single classifier are trained.
In the following, we will refer to it as the Training Error-
based Fitness Function (TEFF).

This training error is computed as follows. Let
h1(x), h2(x), . . . , hl(x) be the outputs of the component
classifiers of the selected ensemble for an input value x =
(x1, . . . , xn). For a given sample {(xk, Ck)}k∈{1...m}, the
training error of that MCS is:

1

m
· #{k | Ck 6= arg max

j∈{1...M}

hj(x
k)} (2)

In the second one, we allow the GA to compute the error
measure of an ensemble by using only the “Out-Of-Bag”
instances of each classifier, i.e. the equation above is com-
puted considering only the instances xk not found into the
bag k (see Figure 1). In the following, we will refer to it as

the Out-Of-Bag Error-based Fitness Function (OOBEFF).
Not only these Out-Of-Bag instances have not been seen
during the learning of each individual classifier, thus lead-
ing to less overfitting, but also the size of the datasets used
for the genetic selection is reduced as only a 37% of the
instances from the original training set is comprised in the
Out-Of-Bags in average [4], thus improving the selection
stage computation time.

The GA looks for an optimal ordering of the compo-
nent classifiers, so that the most relevant classifiers have the
lowest indexes and those redundant members that can be
safely discarded are in the last places. The coding scheme is
thus based on an order-based representation, a permutation
Π = {j1, j2, . . . , jl} of the l originally generated individual
classifiers. In this way, each chromosome encodes l differ-
ent solutions to the problem, based on considering a “basic”
MCS comprised by a single classifier, that one stored in the
first gene; another one composed of two classifiers, those in
the first and the second genes, and so forth.

The degree to which a permutation fulfills this goal is
measured by means of the cumulative error of the ensemble,
defined as the vector containing the training or Out-Of-Bag
error values (depending on the considered approach) of the
first classifier; the subset formed by the first and the second;
and so on. The fitness function is thus multicriteria, being
composed of an array of l values, Li = L′

{j1,j2,...,ji}
, cor-

responding to the cumulative error of the l mentioned MCS
designs. The best chromosome is that member in the popu-
lation with the lowest minimum cumulative error. Then, the
final design is the MCS comprising the classifiers from the
first one to the one having the minimum cumulative error
value (although any other design not having the optimal er-
ror but, for example, showing a lowest complexity can also
be directly extracted, see Fig. 7 in section 6).

Instead of using a Pareto-based approach [9], a lexico-
graphical order is considered to deal with the multicriteria
optimization, since we think it better matches our scenario.
When comparing two chromosomes, one is better than the
other if it takes a better (lower) minimum value of the cu-
mulative error. In case of tie, the first positions of the fit-
ness arrays are compared. If both first positions are of equal
value, the second positions are compared, and so on.

To increase its convergence rate, the GA works following
a steady-state approach. The initial population is composed
of randomly generated permutations. In each generation,
a tournament selection of size 3 is performed, and the two
winners are crossed over to obtain a single offspring that di-
rectly substitutes the loser. In this study, we have considered
OX crossover and the usual exchange mutation [32].
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5 Experiments and analysis of results

In this section, we discuss the performance obtained by a
single FRBCS, an FRBMCS and two GA-selected FRBM-
CSs on nine chosen data sets.

5.1 Experimental setup

To evaluate the performance of the FRBMCSs generated,
we have selected nine data sets from the UCI machine learn-
ing repository (see Table 1). In order to compare the accu-
racy of the considered classifiers, we used Dietterichs 5×2-
fold cross-validation (5×2-cv), which is considered to be
superior to paired k-fold cross validation in classification
problems [17]. In 5×2-cv, five stratified two-fold cross-
validations are performed. The data set is randomly broken
into two halves, and one is used for training and the other
for testing and vice versa. The procedure is repeated five
times, each with a new half/half partition, and a single in-
dex is finally computed by averaging the ten test errors.

Table 1. Data sets considered
Data set #attr. #examples #classes

Pima 8 768 2
Glass 9 214 7

Vehicle 18 846 4
Sonar 60 208 2
Breast 9 699 2
Heart 13 270 2
Yeast 8 1,484 10

Phoneme 5 5,404 2
P-Blocks 10 5,473 5

Three different granularities, 3, 5 and 7, are tested for the
single FRBCS derivation method, for feature sets of size
5 selected by means of three approaches: the greedy Bat-
titi’s MIFS filter feature selection method [3], the Battiti’s
method with GRASP (with τ equal to 0.5, see section 3.2),
and random subspace [23]. Battiti’s method has been run
by considering a discretization of the real-valued attribute
domains in ten parts and setting the β parameter to 0.1.

The FRBMCSs generated are initially comprised by 50
classifiers. The GA for the component classifier selection
works with a population of 50 individuals and runs dur-
ing 50 generations. The mutation probability considered is
0.05.

All the experiments have been run in an Intel quadri-core
Pentium 2.4 GHz computer with 2 GBytes of memory, un-
der the Linux operating system.

5.2 Single FRBCS vs. bagging + feature
selection FRBMCSs

The statistics (5×2-cv error, number of rules, and run
time required for each run, expressed in seconds) for the

single FRBCSs are collected in Tables 2 and 3. There are
three subtables for each feature selection method consid-
ered: Battiti’s method (greedy), Battiti’s method combined
with GRASP with 50% of randomness (GRASP 0.50), and
the random subspace method. The best results for a given
feature selection method are shown in bold and the best val-
ues overall are outlined.

In our previous study [13], we showed that the best re-
sults for the four datasets considered in that contribution
were obtained using 5 labels for the smaller problems (pima
and glass), and 7 labels for the largest ones (vehicle and
sonar). This is not the case with this larger study as sonar
and some other problems with a higher dimension (breast
and heart) give their best results with 3 labels using respec-
tively the GRASP 0.50 and the greedy approaches. For the
largest problems (yeast, phoneme, and p-blocks), the best
performance is still obtained with the largest number of la-
bels.

Overall, the best single FRBCS results were obtained
with GRASP 0.50 for four datasets, and with the greedy
approach for only two datasets (in the remaining three
datasets, these two approaches gave the same results). Pure
random subspace only achieves a draw in the best results
for a single dataset. This confirms the fact that controlled
randomness in the feature selection process is useful when
combined with FRBCSs.

The results for the FRBMCSs of 50 classifiers generated
from the three different feature selection approaches con-
sidered are shown in Tables 4 and Table 5, which present
the same structure than Tables 2 and 3.

Comparing the best results for each dataset for the single
FRBCS and the FRBMCSs, the FRBMCS outperforms the
single FRBCS in five cases (pima, vehicle, sonar, breast,
and heart), the FRBCS outperforms the FRBMCS in three
cases (glass, yeast, and phoneme) and there is a tie in the
remaining case (p-blocks). As can be seen, there is no clear
methodology to get the best FRBMCS: all feature selection
approaches give their best result on at least one dataset, and
there is no optimal granularity for all of the datasets. But
in general, the highest number of times the best results are
obtained is with the random subspace method (4 datasets),
followed the GRASP 0.50 approach (3 datasets), plus the
additional draw in the phoneme dataset. The same sequence
is obtained using respectively 7 labels (4 datasets) and 5
labels (3 datasets).

Finally, over all the different feature selection ap-
proaches, the bagging+feature selection approach allowed
a decrease of 6% of the test error, while reducing by 13%
the average size of the individual classifiers. The best ex-
ample is produced on the breast dataset, with the random
subspace approach, using 5 labels and 5 attributes, in which
the bagging allowed us to get a decrease of a 40% in the test
error, while reducing the size of the rule base by a 4%. The
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Table 2. Results for the single FRBCSs with feature selection (greedy and random subspace)
Greedy

Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks
3 labels 5×2-cv 0.266 0.446 0.549 0.261 0.048 0.197 0.565 0.287 0.089
5 #attr. #rules 178.50 135.30 136.40 146.60 232.90 98.60 212.00 240.70 118.00

time 0.08 0.04 0.12 0.08 0.07 0.02 0.29 0.57 0.62
5 labels 5×2-cv 0.246 0.376 0.430 0.287 0.064 0.227 0.481 0.207 0.077
5 #attr. #rules 682.70 291.00 437.60 615.20 1128 198.90 937.40 1181 358.20

time 0.42 0.25 0.65 0.16 0.40 0.11 2.57 3.16 4.27
7 labels 5×2-cv 0.262 0.414 0.402 0.291 0.136 0.258 0.442 0.181 0.067
5 #attr. #rules 1600 431.20 1021 1218 1752 277.20 2012 3180 731.90

time 1.75 1.32 3.27 0.52 1.49 0.53 13.84 14.27 23.23

Random Subspace
Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks
0.265 0.457 0.512 0.319 0.051 0.252 0.616 0.287 0.088

161.80 109.50 154.50 174.50 207.40 67.60 66.10 240.70 139.00
0.07 0.03 0.12 0.08 0.07 0.02 0.21 0.57 0.65
0.262 0.435 0.460 0.329 0.083 0.262 0.539 0.207 0.081

604.20 259.60 587.80 773.60 804.90 118.70 167.90 1181 504.40
0.36 0.24 0.67 0.17 0.34 0.11 2.10 3.17 4.53
0.276 0.418 0.415 0.340 0.150 0.279 0.496 0.181 0.071
1432 410.90 1266 1536 1261 164.50 297.40 3180 1124
1.66 1.32 3.37 0.63 1.35 0.52 11.82 14.31 24.20

Table 3. Results for the single FRBCSs with feature selection (GRASP 0.50)
GRASP τ = 0.50

Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks
3 labels 5×2-cv 0.267 0.447 0.546 0.316 0.047 0.209 0.565 0.287 0.089
5 #attr. #rules 179.50 137.00 135.80 169.00 233.30 92.10 212.00 240.70 120.20

time 0.09 0.04 0.12 0.09 0.08 0.03 0.29 0.57 0.63
5 labels 5×2-cv 0.246 0.375 0.425 0.314 0.066 0.237 0.481 0.207 0.077
5 #attr. #rules 682.70 293.50 418.90 752.70 1187 176.90 937.40 1181 367.00

time 0.39 0.26 0.63 0.17 0.41 0.11 2.57 3.17 4.30
7 labels 5×2-cv 0.266 0.423 0.399 0.317 0.145 0.270 0.442 0.181 0.065
5 #attr. #rules 1599 437.20 907.50 1470 1886 250.20 2012 3180 757.00

time 1.71 1.34 3.25 0.55 1.52 0.52 13.82 14.35 23.32

Table 4. Results for the FRBCS ensembles (greedy and random subspace)
Bagging + Greedy

Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks
5×2-cv 0.261 0.463 0.525 0.255 0.048 0.187 0.576 0.287 0.088

3 labels #rules 8578 6208 6843 7282 11067 4144 10080 11913 5404
5 #attr. avg. #rules 171.55 124.16 136.87 145.65 221.34 82.87 201.60 238.26 108.07

time 3.43 1.51 4.87 2.52 3.48 0.96 13.81 27.99 26.27
5×2-cv 0.235 0.396 0.400 0.240 0.057 0.207 0.481 0.207 0.077

5 labels #rules 29405 12877 22177 26769 43019 7630 41392 54448 15870
5 #attr. avg. #rules 588.11 257.54 443.55 535.37 860.37 152.60 827.83 1089 317.39

time 17.93 12.11 31.21 6.66 18.50 5.21 128.61 161.12 211.93
5×2-cv 0.243 0.430 0.375 0.262 0.160 0.257 0.444 0.182 0.066

7 labels #rules 64891 18633 48479 49587 61451 10430 85372 143827 31700
5 #attr. avg. #rules 1298 372.66 969.58 991.74 1229 208.61 1707 2877 634.00

time 84.70 67.36 166.51 24.72 71.86 25.58 699.56 712.24 1164

Bagging + Random Subspace
Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks
0.299 0.450 0.453 0.250 0.035 0.166 0.612 0.287 0.100
7936 5671 8008 8174 10479 3821 4608 11913 5641

158.71 113.42 160.16 163.47 209.58 76.43 92.16 238.26 112.82
3.34 1.49 5.06 2.58 3.38 1.00 11.30 29.16 26.84

0.260 0.430 0.378 0.221 0.050 0.201 0.491 0.207 0.090
27199 11998 30799 31824 38502 7471 13732 54448 15209
543.97 239.96 615.97 636.47 770.04 149.42 274.65 1089 304.17
17.64 11.94 33.91 7.13 17.70 5.33 112.41 161.80 205.27
0.263 0.402 0.330 0.241 0.208 0.223 0.444 0.182 0.083
59824 17999 67936 57298 54426 10659 24388 143827 28178
1196 359.98 1359 1146 1089 213.18 487.77 2877 563.57
82.12 66.06 174.24 25.57 70.38 25.36 621.38 725.05 1130

Table 5. Results for the FRBCS ensembles (GRASP 0.50)
Bagging + GRASP τ = 0.50

Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks
5×2-cv 0.262 0.464 0.494 0.246 0.040 0.180 0.578 0.287 0.088

3 labels #rules 8609 6289 7362 7951 11228 4335 9936 11913 5738
5 #attr. avg. #rules 172.18 125.77 147.24 159.03 224.56 86.70 198.72 238.26 114.77

time 3.45 1.53 4.91 2.57 3.54 1.07 13.87 28.37 27.30
5×2-cv 0.234 0.405 0.399 0.220 0.056 0.210 0.482 0.207 0.076

5 labels #rules 29748 13302 25578 30068 44695 8243 40314 54448 16962
5 #attr. avg. #rules 594.95 266.04 511.56 601.36 893.90 164.86 806.29 1089 339.25

time 18.05 12.23 32.79 6.96 18.75 5.24 128.66 159.31 214.29
5×2-cv 0.247 0.425 0.353 0.242 0.186 0.247 0.445 0.182 0.065

7 labels #rules 65802 19272 54721 54684 63352 11480 83519 143827 33599
5 #attr. avg. #rules 1316 385.45 1094 1094 1267 229.60 1670 2877 671.98

time 85.27 68.27 170.48 25.49 72.93 25.45 698.20 713.56 1168

best reduction of the rule base was obtained on the p-blocks
dataset (-50%), with the random subspace approach, using
7 labels and 5 attributes, but at the cost of increasing the test
error by 17%.

The Mann-Whitney U test, also known as the Wilcoxon
Ranksum test, has been used for a deeper insight of the
results. Unlike the commonly used t test, the Wilcoxon
test does not assume normality of the samples [29], which
would be unrealistic in the case of the UCI datasets. The
significance tables presented in this paper contain three
symbols: ’+’ when the significance is favorable for the

method in the row, ’-’ when the significance is favorable for
the method in the column, and ’=’ when there is no signifi-
cance about which method is better than the other. Table 6
shows the statistical significance for the methodology used
to create the classifier ensembles. Each set of parameters
is compared and the one giving the best result for a given
dataset is marked with a star ’*’. The experimental design
is shown in Fig. 2. As said before, in general, the random
subspace method performs well, and the same could be said
independently for the approaches using 7 labels. Here the
statistical test proves it for two datasets: the combination
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Table 6. Statistical test for the comparison of the FRBMCS design methodologies (see Fig. 2). For
each dataset, the best method is marked (’*’) and the others are compared to it

Approach Greedy GRASP τ = 0.50 Random Subspace
3 labels 5 labels 7 labels 3 labels 5 labels 7 labels 3 labels 5 labels 7 labels

Pima µ ± σ 0.261 ±0.0220 0.235 ±0.0156 0.243 ±0.0167 0.262 ±0.0233 0.234 ±0.019 0.247 ±0.0156 0.299 ±0.0284 0.260 ±0.0220 0.263 ±0.0138
Symbol + = = + * = + + +

Glass µ ± σ 0.463 ±0.0491 0.396 ±0.0568 0.430 ±0.0584 0.464 ±0.0489 0.405 ±0.046 0.425 ±0.0648 0.450 ±0.0702 0.430 ±0.0621 0.402 ±0.0519
Symbol + * = + = = + = =

Vehicle µ ± σ 0.525 ±0.0247 0.400 ±0.0267 0.375 ±0.0150 0.494 ±0.034 0.399 ±0.0339 0.353 ±0.0239 0.453 ±0.0209 0.378 ±0.0244 0.330 ±0.0179
Symbol + + + + + + + + *

Sonar µ ± σ 0.255 ±0.0355 0.240 ±0.0301 0.262 ±0.0323 0.246 ±0.0605 0.220 ±0.0445 0.242 ±0.0356 0.250 ±0.046 0.221 ±0.0336 0.241 ±0.0483
Symbol = = + = * = = = =

Breast µ ± σ 0.0478 ±0.0092 0.0575 ±0.0160 0.160 ±0.0187 0.0403 ±0.00965 0.0561 ±0.0148 0.186 ±0.0245 0.0355 ±0.00468 0.0503 ±0.00959 0.209 ±0.0214
Symbol + + + = + + * + +

Heart µ ± σ 0.187 ±0.0322 0.207 ±0.0376 0.257 ±0.0541 0.180 ±0.0331 0.210 ±0.0350 0.247 ±0.0469 0.166 ±0.0335 0.201 ±0.035 0.223 ±0.0513
Symbol = + + = + + * + +

Yeast µ ± σ 0.576 ±0.0445 0.481 ±0.0199 0.444 ±0.0131 0.578 ±0.0477 0.482 ±0.0198 0.445 ±0.0144 0.612 ±0.0314 0.491 ±0.0204 0.444 ±0.0124
Symbol + + = + + = + + *

Phoneme µ ± σ 0.287 ±0.0057 0.207 ±0.00614 0.182 ±0.00933 0.287 ±0.0057 0.207 ±0.00614 0.182 ±0.00933 0.287 ±0.0057 0.207 ±0.00614 0.182 ±0.00933
Symbol + + * + + = + + =

P-Blocks µ ± σ 0.0882 ±0.00247 0.077 ±0.00347 0.0661 ±0.00319 0.0876 ±0.00285 0.0757 ±0.00437 0.0653 ±0.00310 0.100 ±0.00331 0.0897 ±0.00576 0.0834 ±0.00636
Symbol + + = + + * + + +

Figure 2. Experimental design for the sta-
tistical test to compare the FRBMCS design
methodologies
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random subspace + 7 labels obtained the best significant re-
sult (over all the other approaches) for the vehicle and the
yeast datasets.

5.3 Genetic FRBMCS selection using the
TEFF

The values for the genetically selected FRBMCSs using
the TEFF are collected in Tables 7 and 8. Table 7 shows
the results obtained with the TEFF and the greedy and the
random subspace feature selection methods. Table 8 shows
the results obtained with the TEFF and the GRASP 0.50
feature selection method.

The first conclusion we can draw is that the TEFF was
able to reduce the best test error for all the problems in
comparison with the use of a single classifier. The best im-
provement was obtained on the sonar dataset (-17%). TEFF
is better than a single classifier in all the cases (see Ta-
bles table:results-without-bagging-0-100 and table:results-
without-bagging-50). Comparing the individual test errors

between the single classifiers and the GA selection using the
TEFF, the best improvement of test error (-33%, with 19x
more rules) was obtained with the heart dataset, using the
random subspace approach with 3 labels and 5 attributes,
proving that randomness is very useful for the improvement
of the error. It seems there is a direct relation between the
randomness injected in the feature selection method and the
amount of improvement of the test error observed between
a single classifier and an ensemble selected by the TEFF.
In average, over all datasets and all granularities values, the
random subspace causes a decrease of a 11% of the test er-
ror, while the GRASP 0.50 causes a decrease of a 7% and
the greedy approach of only a 5%. Concerning the number
of rules, the TEFF produces 10.4x more rules than a single
classifier in average, but produces 4.2x less rules than the
initial FRBMCSs.

Moreover, it reduces the best test error obtained with the
initial FRBMCSs with 50 component classifiers for many
datasets, including those with the highest dimension (glass,
sonar, yeast, phoneme, p-blocks). The best improvement of
the best test error compared to the initial FRBMCSs was
obtained on the glass dataset (-9%).

5.4 Genetic FRBMCS selection using the
OOBEFF

The values for the genetically selected FRBMCSs us-
ing the OOBEFF are collected in Tables 9 and 10. Table 9
shows the results obtained with the OOBEFF and the greedy
and the random subspace feature selection methods. Ta-
ble 10 shows the results obtained with the OOBEFF and the
GRASP 0.50 feature selection method.

The FRBMCSs based on the OOBEFF are better than
the single FRBCSs in seven cases, and slightly worse in the
other two cases (glass and yeast). Comparing the individual
test errors between the single classifiers and the GA selec-
tion using the OOBEFF, the best improvement of test error
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Table 7. Results for the FRBCS ensembles selected by the GA using the TEFF (greedy and random
subspace)

Bagging + Greedy
Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks

5×2-cv 0.257 0.360 0.461 0.235 0.047 0.185 0.498 0.286 0.084
3 labels #classifiers 4.1 7.3 10.3 12.3 3.2 11.8 6.9 5.9 2.7
5 #attr. #rules 696.5 904.3 1431.0 1842.1 714.3 964.7 1406.0 1411.4 303.2

avg. #rules 171.5 125.4 138.3 148.3 221.8 82.2 203.4 239.4 112.7
time 94.06 26.35 103.26 25.32 83.90 32.86 184.60 656.29 648.74

5×2-cv 0.242 0.383 0.392 0.247 0.063 0.214 0.476 0.205 0.075
5 labels #classifiers 11.5 15.9 15.5 10.4 5.4 16.6 12.7 6.6 4.8
5 #attr. #rules 6744.9 4233.1 7338.4 5757.7 4795.2 2809.5 10513.1 7162.0 1532.0

avg. #rules 592.8 268.7 481.9 567.0 898.7 162.2 832.7 1088.4 330.2
time 93.48 26.10 103.48 25.17 84.57 32.45 182.64 663.86 643.33

5×2-cv 0.258 0.393 0.374 0.258 0.156 0.250 0.446 0.180 0.064
7 labels #classifiers 12.7 8.9 14.6 6.3 20.9 16.3 17.0 10.6 6.0
5 #attr. #rules 16614.3 3524.3 16102.3 6427.0 26455.1 3716.1 29091.4 30490.3 3949.9

avg. #rules 1313.9 404.5 1115.7 1040.9 1256.1 227.3 1715.8 2872.8 655.6
time 92.87 26.50 102.90 24.85 84.00 32.48 186.18 647.24 656.13

Bagging + Random Subspace
Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks
0.256 0.381 0.428 0.216 0.042 0.170 0.505 0.286 0.080
4.2 13.7 13.4 20.1 6.4 15.7 5.7 5.9 4.9

703.4 1546.0 2239.5 3376.7 1352.7 1260.3 546.1 1411.4 597.0
168.1 113.1 168.9 168.3 209.7 80.1 99.1 239.4 124.6
92.77 26.39 103.24 25.08 84.81 32.63 182.90 657.48 650.83
0.263 0.392 0.378 0.249 0.063 0.204 0.483 0.205 0.074
11.9 13.7 13.0 9.4 5.5 13.5 14.1 6.6 7.4

6680.0 3312.2 9455.9 6208.8 4690.0 2341.9 4225.5 7162.0 2682.9
555.8 245.0 734.3 668.8 856.8 177.1 301.3 1088.4 385.7
91.47 26.18 104.81 24.83 85.60 32.94 183.64 658.75 645.97
0.265 0.393 0.337 0.267 0.187 0.250 0.441 0.180 0.065
17.0 15.5 17.5 6.4 10.2 10.5 21.5 10.6 5.4

21289.5 5980.6 28854.2 7655.2 11141.2 2902.1 12849.9 30490.3 4253.2
1248.4 386.2 1680.2 1203.7 1092.8 279.1 602.2 2872.8 840.2
92.31 26.08 103.52 25.19 84.10 32.78 184.77 639.66 649.01

Table 8. Results for the FRBCS ensembles selected by the GA using the TEFF (GRASP 0.50)
Bagging + GRASP τ = 0.50

Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks
5×2-cv 0.254 0.372 0.449 0.237 0.047 0.183 0.504 0.286 0.083

3 labels #classifiers 4.4 10.2 12.9 13.9 6.0 15.0 6.9 5.9 6.7
5 #attr. #rules 763.0 1317.9 1991.6 2252.6 1330.4 1333.1 1377.5 1411.4 811.0

avg. #rules 174.3 126.0 155.9 161.7 222.4 89.9 200.0 239.4 124.6
time 93.37 26.49 102.09 25.18 83.65 32.78 184.07 655.97 647.14

5×2-cv 0.239 0.363 0.399 0.252 0.061 0.202 0.475 0.205 0.074
5 labels #classifiers 10.9 14.7 12.0 7.8 5.2 13.1 15.3 6.6 9.8
5 #attr. #rules 6497.4 3986.7 7227.3 4893.9 4709.5 2448.1 12415.5 7162.0 3332.2

avg. #rules 593.5 282.0 611.3 630.0 907.1 183.6 815.7 1088.4 383.4
time 92.58 26.16 103.75 24.86 84.30 32.24 184.11 654.60 648.25

5×2-cv 0.256 0.395 0.356 0.257 0.174 0.241 0.441 0.180 0.063
7 labels #classifiers 16.4 10.3 13.2 6.7 11.8 15.4 18.0 10.6 8.6
5 #attr. #rules 21836.6 4140.6 18296.2 7767.8 15168.6 4132.7 30697.7 30490.3 6033.9

avg. #rules 1346.2 401.9 1386.5 1148.7 1285.4 276.3 1703.5 2872.8 698.7
time 92.49 26.18 102.93 25.31 84.24 32.44 187.73 640.89 652.24

Table 9. Results for the FRBCS ensembles selected by the GA using the OOBEFF (greedy and ran-
dom subspace)

Bagging + Greedy
Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks

5×2-cv 0.255 0.417 0.497 0.239 0.047 0.187 0.530 0.286 0.087
3 labels #classifiers 11.5 12.3 14.2 14.7 12.9 12.0 10.8 10.2 9.3
5 #attr. #rules 1996.8 1516.8 1952.4 2172.6 2856.8 1014.7 2174.4 2431.1 1036.4

avg. #rules 172.9 123.2 137.7 145.4 221.0 84.2 202.1 238.2 110.1
time 103.61 29.12 116.53 28.22 94.52 36.47 205.65 732.06 722.17

5×2-cv 0.239 0.380 0.394 0.247 0.059 0.212 0.477 0.207 0.076
5 labels #classifiers 15.6 12.2 18.7 16.9 19.5 16.8 17.1 15.0 12.9
5 #attr. #rules 9121.5 3186.1 8382.3 9305.7 16850.9 2636.3 14160.0 16311.2 4117.0

avg. #rules 589.7 262.9 449.7 550.2 863.5 160.1 827.1 1089.1 318.2
time 103.56 29.36 116.06 28.08 94.61 36.08 206.10 728.76 722.00

5×2-cv 0.252 0.417 0.365 0.262 0.158 0.258 0.446 0.180 0.065
7 labels #classifiers 18.3 12.6 21.7 18.0 17.9 15.8 18.9 17.7 15.7
5 #attr. #rules 23663.2 4616.8 21619.7 18010.3 22124.3 3491.5 32317.7 51100.6 9992.5

avg. #rules 1287.5 364.6 969.4 998.4 1234.5 217.5 1707.8 2879.4 639.3
time 104.59 29.37 114.82 28.02 94.26 36.45 204.82 716.90 722.82

Bagging + Random Subspace
Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks
0.264 0.401 0.448 0.236 0.036 0.174 0.551 0.286 0.086
11.6 14.9 19.5 19.5 16.1 20.2 14.0 10.2 10.7

1843.1 1653.0 3243.9 3196.2 3363.9 1614.6 1402.4 2431.1 1237.9
159.5 111.4 166.6 163.8 209.8 80.3 101.1 238.2 115.4

104.26 29.42 114.90 28.15 93.50 36.51 204.74 730.77 722.48
0.252 0.403 0.374 0.211 0.053 0.204 0.493 0.207 0.078
15.1 14.2 23.2 26.2 24.5 20.1 27.3 15.0 13.9

8327.6 3410.0 14449.0 16535.2 19118.5 3161.8 8139.7 16311.2 4686.5
553.4 239.1 625.8 632.0 786.4 154.2 297.2 1089.1 341.3

104.13 29.59 116.17 27.95 94.83 36.65 203.66 731.34 722.34
0.263 0.380 0.329 0.238 0.192 0.230 0.444 0.180 0.069
19.2 14.9 26.6 23.9 16.1 20.7 33.8 17.7 15.7

22950.1 5568.1 36149.9 27271.6 17731.8 4677.2 16597.5 51100.6 10227.8
1199.9 381.2 1356.3 1142.8 1097.0 225.4 492.7 2879.4 658.8
103.51 29.43 116.30 28.28 94.73 36.28 206.29 731.03 726.54

(-36%, with 24x more rules) was obtained with the breast
dataset, using the random subspace approach with 5 labels
and 5 attributes. When comparing with the same result us-
ing the TEFF, it seems the random subspace allows the best
increase for both fitness functions, proving again that a fea-
ture selection method based on randomness is very useful
for the improvement of the performance. In average, over
all datasets and all granularities values, the random sub-
space causes a decrease of a 12% of the test error, while
the GRASP 0.50 causes a decrease of a 6% and the greedy
approach of only a 3%.

Concerning the number of rules, the OOBEFF produces
15.9x more rules than a single classifier in average (so 54%
more than the number obtained for the TEFF function), but
produces only 2.7x less rules than a FRBMCS.

It reduces the best test error obtained with the ini-
tial FRBMCSs with 50 component classifiers in five cases
(glass, vehicle, sonar, phoneme and p-blocks), and the per-
formance is equal in one more case (yeast). The best im-
provement of the best test error compared to the FRBMCS
was obtained on the sonar dataset (-4%).
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Table 10. Results for the FRBCS ensembles selected by the GA using the OOBEFF (GRASP 0.50)
Bagging + GRASP τ = 0.50

Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks
5×2-cv 0.260 0.419 0.474 0.226 0.045 0.185 0.528 0.286 0.086

3 labels #classifiers 9.9 13.8 16.7 18.7 15.7 15.4 13.3 10.2 9.1
5 #attr. #rules 1702.0 1736.3 2496.4 3000.3 3520.8 1360.4 2665.5 2431.1 1070.2

avg. #rules 171.6 124.1 148.2 160.9 224.3 87.7 199.9 238.2 115.8
time 104.61 29.55 114.91 28.05 94.02 36.20 205.21 731.10 725.43

5×2-cv 0.237 0.388 0.386 0.233 0.056 0.215 0.481 0.207 0.076
5 labels #classifiers 16.0 12.7 19.4 19.3 21.2 16.8 16.4 15.0 15.2
5 #attr. #rules 9514.2 3414.0 9924.2 11700.3 19118.3 3004.7 13242.0 16311.2 5213.4

avg. #rules 592.0 268.1 508.5 603.0 902.1 178.8 802.0 1089.1 343.2
time 103.22 29.26 115.06 27.99 94.65 35.94 203.20 724.91 719.22

5×2-cv 0.253 0.435 0.348 0.235 0.179 0.241 0.445 0.180 0.064
7 labels #classifiers 16.5 13.3 23.4 22.8 16.0 18.7 18.5 17.7 14.8
5 #attr. #rules 21592.2 5114.6 25346.8 24704.1 20646.1 4475.4 31183.4 51100.6 10088.3

avg. #rules 1318.6 377.7 1077.7 1088.2 1290.1 237.9 1684.9 2879.4 685.3
time 103.88 29.00 115.02 28.54 93.57 36.89 204.52 717.69 726.78

5.5 Comparison of the TEFF and the
OOBEFF genetic OCS FRBMCS
strategies

Comparing the two fitness functions, the OOBEFF is
able to outperform the TEFF in the individual test error
for 26 cases, mainly for some configurations applied on the
smallest datasets (pima, glass, vehicle, sonar, breast, and
heart). The best individual improvement observed was on
the breast dataset (-16%), with random subspace (again!)
with 5 labels and 5 attributes. We have compared the av-
erage improvement over the feature selection approaches,
over all the datasets, and only the random subspace shows
an improvement with the OOBEFF (-0.52%), while an in-
crease of 0.86% with GRASP 0.50 and of 1.42% with the
greedy approach are found. Comparing the number of la-
bels, regardless the datasets and the feature selection ap-
proaches, it seems that the best test error improvement was
obtained with 5 labels (-1.2%, +3.1% with 3 labels and -
0.1% with 7 labels). For all the remaining cases, it seems the
OOBEFF is a little worst than the TEFF, but the results are
still better than those obtained by the initial pool. This little
decrease in the classification accuracy could be explained
by the fact the GA is using less instances (in general, the
bootstrapping produce a 37% of instances in the “Out-Of-
Bags”, this means 63% less instances in average).

Fig. 3 shows a comparison between the average test er-
ror (taking all the experiments we did with all the parame-
ter settings into account) obtained on the initial FRBMCS
of 50 classifiers, and the FRBMCSs derived by the GA us-
ing the TEFF and the OOBEFF. As can be seen, the test
error obtained by a genetic selection is better in eight cases
(pima, glass, vehicle, sonar, breast, yeast, phoneme, and p-
blocks). The OOBEFF only outperforms the TEFF in three
cases (pima, sonar and breast), corresponding to those cases
in which the TEFF was already able to outperform the initial
ensemble. In average, the accuracy of the initial ensemble
is improved around a 3.2% by the TEFF and around a 2.5%
by the OOBEFF.

Looking at the ensemble size, the two fitness functions

Figure 3. Comparison of the average test er-
rors of a single classifier, the initial FRBMCS,
and those generated using the TEFF and the
OOBEFF-based genetic selection
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perform properly. For the TEFF, in general, the number of
selected classifiers is very small (10.7 in average, 21.5 for
yeast), while keeping the same order of accuracy than the
corresponding full 50 FRBCS ensembles. For the OOB-
EFF, the results are a bit worst (16.7 in average, 33.8 for
yeast): it produces a slightly higher number of classifiers,
which makes sense considering the fact that the selection is
based on non-seen instances. The increase is highly variable
depending on the datasets: ranging from +10% for glass to
+114% for breast. There are only some (six) cases in which
the OOBEFF produced smaller ensembles: glass for 5 la-
bels (greedy and GRASP 0.50) and 7 labels (random sub-
space); sonar for 3 labels (random subspace); and breast and
heart for 7 labels (greedy). Thus, the TEFF achieved a good
accuracy-complexity trade-off in almost all datasets, but the
OOBEFF could be interesting in some cases to improve the
accuracy while decreasing the complexity (e.g., on glass, 5
labels, 5 attributes and the greedy approach, the ensemble
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is reduced by a 23% while still decreasing the test error).

Figure 4. Comparison of the average com-
plexity (# of classifiers) between the selected
FRBMCSs using the TEFF and those gener-
ated using the OOBEFF-based genetic selec-
tion
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Finally, Fig. 4 shows a comparison between the average
complexity (computed as the number of existing classifiers
in the different FRBMCSs) obtained from the initial ensem-
bles processed by the GA using the TEFF and the OOBEFF.
As a reference, the complexity of a single classifier (1) and
of the full ensemble (50) are also represented. As can be
seen, the TEFF leads to smaller ensembles, and the highest
decrease is observed in the p-blocks dataset (-87% with the
TEFF, -74% with the OOBEFF). This could be explained by
the fact that to reduce overfitting on the non-seen instances,
the GA has to include more classifiers in the ensembles.
In average, the increase of the size between the two fitness
functions is about 63%, but the size of the ensembles ob-
tained with the OOBEFF is still 67% smaller than the initial
ensemble (79% smaller using the TEFF).

Thus, both fitness functions could be viewed as a proper
way to improve the results obtained by the initial ensemble
while reducing its complexity, with the TEFF giving better
results.

5.6 Statistical significance of the results

Table 11 shows the results of the statistal tests performed
to check if the performance of the initial FRBMCSs and
the performance of the GA selected FRBMCSs outperform
significantly the performance of the single classifier. The
best result for each dataset is marked with a star ’*’. The
experimental design is shown in Fig. 5.

The best results (in average) are always obtained by the

Figure 5. Experimental design for the statis-
tical test to compare the selected FRBMCS
design methodologies
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Figure 6. Experimental design for the statisti-
cal test to compare the two fitness functions
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initial or the selected ensembles, even if they are only sig-
nificant for three datasets (on vehicle and sonar, the perfor-
mance of the GA outperforms significantly the single clas-
sifier; on breast the performance of the initial ensemble out-
performs significantly the single classifier). In general, the
best results are obtained when considering the GA selection
(the GA got the best results for 6 datasets, versus only 3 for
the initial ensemble).

Thus, combining bagging and the GA selection process
to design FRBMCSs performs better for high dimensional
problems with a large number of attributes, producing a
smaller rule base while reducing the test errors in some
cases, which was our original goal [13]. When combin-
ing these two techniques with an advanced feature selection
process we also get an improvement on the accuracy for
datasets with a higher dimension (glass, vehicle, sonar, and
especially, yeast, phoneme and p-blocks, see Table 11).

Table 12 shows the results of the statistical test per-
formed to check the significance of the performance com-
parison of the TEFF and the OOBEFF for all the approaches
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Table 11. Statistical test for the comparison of the FRBMCSs versus the GA selected FRBMCSs
methodologies (see Fig. 5). For each dataset, the best result is marked (’*’) and the others are
compared to it

Best single classifier Best ensemble Best ens. selected
(app./labels) (app./labels) (app./labels/fitness)

Pima Approach GRASP/5 GRASP/5 GRASP/5/OOBEFF
µ ± σ 0.246 ±0.00991 0.234 ±0.019 0.237 ±0.0134

Symbol = * =
Glass Approach GRASP/5 Greedy/5 Greedy/3/TEFF

µ ± σ 0.375 ±0.0526 0.396 ±0.0568 0.360 ±0.0507
Symbol = = *

Vehicle Approach GRASP/7 Random/7 Random/7/OOBEFF
µ ± σ 0.399 ±0.0262 0.330 ±0.0179 0.329 ±0.0241

Symbol + = *
Sonar Approach Greedy/3 GRASP/5 Random/5/OOBEFF

µ ± σ 0.261 ±0.0463 0.220 ±0.0445 0.212 ±0.0413
Symbol + = *

Breast Approach GRASP/3 Random/3 Random/3/OOBEFF
µ ± σ 0.0466 ±0.0076 0.0355 ±0.00468 0.0360 ±0.0054

Symbol + * =
Heart Approach Greedy/3 Random/3 Random/3/TEFF

µ ± σ 0.197 ±0.0284 0.166 ±0.0335 0.170 ±0.0360
Symbol = * =

Yeast Approach Greedy/7 Random/7 GRASP/7/TEFF
µ ± σ 0.442 ±0.0123 0.444 ±0.0124 0.441 ±0.0151

Symbol = = *
Phoneme Approach Greedy/7 Greedy/7 Greedy/7/TEFF

µ ± σ 0.181 ±0.00944 0.182 ±0.00933 0.180 ±0.00939
Symbol = = *

P-Blocks Approach GRASP/7 GRASP/7 GRASP/7/TEFF
µ ± σ 0.0648 ±0.00404 0.0653 ±0.00310 0.0634 ±0.00318

Symbol = = *

Table 12. Statistical test for the comparison of the two GA fitness functions (see Fig. 6). For each
dataset, the OOBEFF is compared to the TEFF for each approach (’+’ means the OOBEFF is signifi-
cantly better). The results are shown with a confidence of 5 and 10%. Only the datasets/approaches
with statistically significant differences are listed

Approach Greedy GRASP τ = 0.50 Random Subspace
Datasets 3 labels 3 labels 7 labels 3 labels 5 labels 7 labels

Glass – =/– =/–
Vehicle =/–
Sonar +
Breast =/+
Yeast – – –

P-Blocks =/– – – –

and all the datasets. Only the datasets/approaches combina-
tions giving significant results are shown. In this table, the
symbols correspond to a confidence of 5% and 10%, re-
spectively. The experimental design is shown in Fig. 6. As
already said, in general, the TEFF performs significantly
better for six approaches considered in four datasets, while
the OOBEFF performs significantly better only for one ap-
proach (5 labels + random subspace) in two datasets. Thus,
in most of the cases, the two fitness functions give equal
performance, apart from some cases (only 13 cases in com-
parison to the 81 cases considered), in which the OOBEFF
performs slightly worse.

6 On the different FRBCS ensembles con-
tained in the best chromosome

For the readability of the paper, we will only show an ex-
ample of the multicriteria selection capability. In Fig. 7, a
graphical representation of the training and test error trends
of all the FRBMCSs encoded in the best chromosome ob-
tained from the TEFF-based genetic selection when applied
on the initial FRBCS ensemble for the sonar dataset (bag-
ging+random subspace, 3 labels, 5 attributes) are shown.

The chosen solution (the one with the lowest Training
Error TE=0, with 26 classifiers) is highlighted. Notice that

13



the ensemble of 9 classifiers has a better test error and is
actually smaller; and how bigger ensembles lead to bigger
training and test errors.

Figure 7. An example of the training and test
errors for the 50 FRBMCSs selected by a
chromosome

We leave for future works the study of this capability of
our algorithm and the analysis of its interrelation with the
two fitness functions.

7 Conclusions and future works

We have proposed the use of bagging and feature se-
lection approaches like random subspace and greedy and
GRASP-based Battiti’s methods, together with a TEFF and
a OOBEFF-guided multicriteria GA, to design FRBMCS
ensembles with a good accuracy-complexity trade-off. The
resulting FRBCS ensembles have shown to be able to deal
with classification problems with a large number of features
(up to 60) and a large number of instances (up to 5,400).
The results obtained in some popular data sets of high di-
mension are quite promising.

Our future work will be concentrated on the study of
the influence of other parameters (the GA parameters for
instance), on the design of more advanced genetic MCS
selection techniques (for example, the use of Pareto-based
algorithms), on the use of more advanced fuzzy reasoning
mechanisms both in the component FRBCSs and in the en-
semble, on the analysis of the multicriteria GA potentials,
and on the design of MCSs of more accurate FRBCSs.
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