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GramGen: A Genetic Programming System Based
on Context Free Grammar

Arnaud Quirin, Jerzy Korczak

Abstract— In this paper, a new genetic programming system,
called GramGen, is described. The system combines context free
grammar (CFG) with genetic programming and uses an extended
operator set. The objective of the grammar is to limit the size
of the search space by allowing the user to define constraints
related to the structure or the simplicity of the discovered
formulas. These constraints are taken into account by the use
of specific genetic operators. Our algorithm have been validated
on image processing applications containing voluminous, noisy,
and sometimes, not well registered data. The experiments shown
that the proposed system allows users to discover new formulas
as well as improve the performance of existing ones.

Index Terms— genetic programming, CFG grammar, classi-
fiers, genetic representation, data mining.

I. INTRODUCTION

A genetic programming algorithm (GP) is a kind of evolu-
tionary algorithm in which the genetic individuals correspond
to functions or programs [11]. GP offers several interesting
advantages in terms of knowledge representation and knowl-
edge discovery. The rule representation by syntactic trees is
easy to understand and facilitates knowledge validation by a
human expert. On the other hand, an evolutionary algorithm
provides an increased resistance of discovery with regards to
noisy data and local minima. The ability to customize genetic
operators allows a deeper interaction with the human expert or
the domain knowledge (such as specific convergence criteria,
fitness function able to deal with understandability measures
for the trees such as size, depth, balancing).

GP has been used for a long time for image processing,
especially for shape detection. The work of Daida [4] or Harris
[9] can be quoted, in which an individual is a program being
executed on a 3∗3 or 5∗5 window of an image to detect the
contrast difference between two pixels. Interesting results have
been obtained in edge detection, by using the specification
language EASEA [2], [3] to create artificial-animal detectors.

GP has been also applied for the processing of satellite
images and their classification. For instance, a solution to solve
the inverse PAR problem (Photosynthesis Available Radiation)
has been proposed in [5], [14] or [18]. This approach tries
to discover a function representing several characteristics of
the domain knowledge. Here, the number of available photons
for photosynthesis in a marine environment is modelled, using
the signal perceived by the sensors. With a population of 5000
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individuals, the operators (+, −, ∗, /) and a maximum depth
of 10 for the trees, the authors have obtained a result correlated
at 81% with those of an algorithm employed by NASA [14].
As shown in the paper, the algorithm is very sensitive to over-
fitting and noisy data. In fact, the application of the algorithm
to noisy data, as is often the case in remote sensing, remains
relatively difficult.

To illustrate our approach, the symbolic regression on
remote sensing images are examined in the case of supervised
learning. Regression of remote sensing images is performed
by assigning pixels of a remote sensing image to real numbers.
These numbers indicate the proportion of a given class (i.e.
water, vegetation, building, etc.) in this pixel. The process
of regression is complex because of voluminous, noisy data,
and existance of contradictions between the observed and the
ground truth data.

An interesting application of GP is the determination
of indices such as the Normalized Difference Vegetation
Index1 or the Brightness Index2 [7]. The indices are formulas
converting the values of a pixel (a spectral vector) into a
proportion of a given class (expressed as a percentage of
vegetation or ground). Since the indices may contain many
operators, and since the images are voluminous (sometimes
about 1000 × 1000 pixels), the main difficulty is caused by
the very large size of the search space. Therefore for remote
sensing geographers the opportunity of automatic discovery of
such formulas is very interesting not only because new indices
may be elaborated, but also one may improve the performance
of the existing ones.

In this paper, a grammar-based GP system, called Gram-
Gen, is proposed to limit the size of the search space and allow
to define constraints related to the structure and complexity
of the formulas. In the system, the constraints are taken into
account by applying specific genetic operators to simplify
generated formulas, and in consequence, make them more
comprehensive.

To introduce the problem of knowledge representation in
GP systems, let us define a few basic terms, notably:

• Genotypic tree. A tree corresponding to the content
of the genetic chromosomes. This tree is related to the
grammar and is used to facilitate the generation of new
individuals.

• Phenotypic tree. A tree corresponding to the interpreta-
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tion of the genotypic tree. This tree is derived from the
genotypic tree and encodes the function given to the user.

• Non terminal symbol. The non terminal symbols are
nodes of the genotypic trees and they are only useful
during the derivation step, in which the production rules
of the grammar are applied.

• Terminal symbol or terminal operator. The terminal
symbols are nodes existing both in a genotypic tree
and in a phenotypic tree. In this paper, this term does
not indicate the value of a node, but the corresponding
keyword. We will use these keywords in the case study
section. For instance, opMUL refers to the multiplication,
opSIN to the sinus and opCST to an instantiated constant.

• Node operator or functions. Node operators correspond
to functions with an arity greater than 0, such as opMUL,
opSIN, etc. They are only used in the leafs in the
genotypic trees (and not in the phenotypic trees).

• Leaf terminal. Leaf terminals are leafs in the phenotypic
tree and correspond to functions of arity 0, such as
opCST (instantiated constants) or opARG (instantiated
arguments).

• Grammatical disjunction. Right part of a production
rule containing one or several conjunctions. This part
replace the left part during a derivation.

• Grammatical conjunction. Part of a disjunction corre-
sponding to a terminal or a non terminal symbol.

Each one of these terms will be detailed later.
In the next section the GramGen system is presented.

In section III, the formalism of the grammar is described.
Section IV introduces the terminal operators used in the
algorithm, the opPUSH operator and the opPOP operator
followed by the initialisation, the crossover and the mutation
operators are described. Finally, in the last section, four
cases are discussed illustrating the ability of our algorithm
to produce comprehensible rules.

II. MAIN ALGORITHM

The general principle of rule discovery by GP follows
the principle of evolution-based algorithms [8], except that
here, the rules introduced by the algorithm correspond to tree
structures including node operators and leaf terminals.

GramGen uses this principle, and in addition, imple-
ments a set of constraints on the tree representation using a
grammar initially defined by the user. An other point is that the
individuals of the population are ordered by their fitness values
as an efficient way to find similar individuals. This measure
is simply used as an indicator of a premature convergence of
the population and is shown to the user.

Algorithm A1 describes the main algorithm of Gram-
Gen.

GramGen applies a grammar, parameterized by the user
before starting the algorithm to discover the rules. The genetic
operators are strongly based on this grammar. Thus, during
the initialisation step, the crossover step, or the mutation step,

ALGORITHM A1
GRAMGEN : MAIN ALGORITHM

 Result - I , the function (tree) solving the given problem
 Propχ is the proportion of crossovers in the population
 Propρ is the proportion of reproductions in the
population
 Propµ is the proportion of mutations in the population

Initialize the algorithm (gen=0, pop={})
Randomly create an initial population pop
repeat

Begin a generation (indiv=0, popnew={})
while indiv/size(pop) < Propχ do

Choose two individuals from pop based on the
crossover selection strategy
Carry out the crossover (see the section IV)
Insert the two offsprings into popnew (indiv=indiv+2)

end while
while indiv/size(pop) < Propρ do

Choose an individual from pop based on the
reproduction selection strategy
Copy this individual into popnew (indiv=indiv+1)

end while
while indiv/size(pop) < Propµ do

Choose an individual from popnew based on the
mutation selection strategy
Choose randomly a type of mutation among the three
available (see the section IV)
Carry out the mutation
Insert the new individual into popnew (indiv=indiv+1)

end while
Compute the new population (replacement) :
pop=Recycle(pop,popnew)
Evaluate the fitness of each individual in the population
Order the individuals of the population by their fitness
Compute the values of the termination criteria (number
of generations, best fitness exceeding a threshold,
average fitness exceeding a threshold)
gen=gen+1

until One of the termination criteria are satisfied
Return the best individual I according to its fitness

Algorithm 1: Algorithm GramGen

the constraints defined by the grammar are always true at
the output of the operators. These constraints are defined
in terms of grammatical constraints (« the numerator of a
ratio must not have multiplicative signs ») and probability
constraints (« the multiplicative and addition signs must have
the same probability of appearance »). In particular, we have
proposed two ways to guarantee that the genetic operators
produce only correct offsprings. The passive method checks
each produced individual and deletes the trees which do not
satisfy the grammatical constraints. The active method ensures
that the operators produce directly correct individuals in terms
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of grammatical constraints and predefined probabilities. These
last operators are more complex to describe, but as they do
not lose time by generating and deleting useless individuals,
thus they have been selected in the final implementation of
GramGen.

The fitness function of GramGen measures the relative
quality of an individual by comparing it to other individuals in
the population. The fitness function is the ratio of the wealth
of an individual and the sum of the wealth of all individuals of
the whole population. In our case, this evaluation is computed
for each individual using the following formula:

E(i) = CfunEfun(i) + CsizeEsize(i)

+CcstEcst(i) + CargEarg(i) (1)

where Efun(i), Esize(i), Ecst(i) and Earg(i) are the
evaluation of the individual i according to specific constraints,
and Cfun, Csize, Ccst and Carg are the weights set by the user
according to his appreciation for each constraint. The values
of each specific evaluation function are between 0 and 1.

Efun(i) computes the accuracy between the expected
value of a training sample and the value obtained using the
formula encoded in the individual i. The average of the sum
of the error squared obtained on the training set is used as
the result of Efun(i). It should be noted that in regression
problems, the error corresponds to e−|D| where D is the
difference between the obtained and the expected value. In
classification problems, for an expected class, the error is 0
for a positive value and 1 for a negative value. And, for an
unexpected class, the error is equal to 1 for a positive value
and 0 for a negative value.

Esize(i) computes the score of an individual according to
an expected size, which corresponds to the number of nodes
in the tree. This enables the user to specify a constraint on
the size of the tree, which influences to the understandability
of the obtained formula. In general, the shorter a formula is,
the more understandable it will be, but the accuracy will also
decrease. The user inputs an ideal number of nodes, X , and
a maximal number of nodes, M . Let a given formula be i
with s nodes. If s is between 0 and X , the score is computed
proportionally between 0 and 1. If s is between X and M ,
the score is computed proportionally between 1 and 0. And,
if s is above M , the score is set to 0.

Ecst(i) and Earg(i) compute the score of an individual
according to the number of constants and to the number of
arguments used in the formulas. When a formula contains
more constants, the accuracy is higher, but it will be more
difficult and specific to the training set. Comparatively, when a
formula uses more arguments (attributes of a training sample),
this formula will be more complex and more difficult to
understand. The user can input an upper number of constants
and/or arguments, and the score is computed as before.

Consequently, the evaluation function used in GramGen
is a tradeoff between the accuracy and the constraints defined

by the user in terms of understandability and readability of the
obtained formulas.

III. FORMALISM OF THE GRAMMAR

Regression systems based on GP usually amplify the
size of the trees during the search of a reliable solution. For
instance, a research work presented by Ross [15] shows a tree
requiring about fifty nodes to be effective in a classification
problem for a real-world application. The produced tree does
not deliver a clear and intuitive explanation to users. Type-
based genetic programming is often difficult to understand,
especially for users without extensive GP experience who need
to design grammars. However, in these kind of problems, a
rigorous interpretation of the generated functions by a human
expert is required for the validation of these functions. To
simplify the trees, some constraints have often been proposed,
as for instance those described by Montana [13]. In his
project, the nodes are associated with data types and only the
authorized grammatical constructions are admitted. However,
in many regression or classification problems, the data have
often the same format and this kind of type assignment is not
required.

In our approach, the well-known Context Free Grammar
(CFG) has been applied [6], [10]. This grammar is simple,
general and can be put in the normal form to be fast and
effective for the parsing operators.

Formally, a CFG can be defined as a quadruplet G =
(Vt, Vn, P, S), where:

• Vt is a finite set of terminals,
• Vn is a finite set of non-terminals,
• P is a finite set of production rules,
• S is an element of Vn and correspond to the start symbol.

The elements of P are represented by Vn → (Vt ∪ Vn)∗.
Below, an example of a CFG grammar is given:

• Vt = {opADD, opARG, opCST}
• Vn = {S}
• P = {S → opADD S S, S → opCST, S → opARG}
• S = S

Figure 1 illustrates this CFG. The operator opADD
corresponds to the addition between two numbers and the
operator opARG corresponds to an argument of the function
(the real index of the argument is instantiated in the phenotypic
tree). The operator opCST corresponds to a constant (the real
value of the constant is instantiated in the phenotypic tree).
Grammars like this are able to derive trees of variable sizes.

In GramGen, the start symbol is derived using the
production rules until the obtained set contains only terminal
symbols. The trace of this derivation can be reproduced in
the form of a tree, called in the paper a derivation tree or a
genotypic tree. Thus, the trace of the rule A → B is a tree with
a root node A connected to a child node B. A rule A → BC is
a tree with a root node A connected to two child nodes B and
C. At a given time, a non terminal symbol has to be derived,
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Fig. 1. Several genotypic trees produced using a derivation rule and an
instance of a production rule.

in one or more symbols, using only one of the production
rules. The symbol « | » is used to separate several production
rules (disjunctions). The creation of the genetic individuals is
carried out in two steps (Figure 2): the grammar is firstly used
to define a genotypic tree AG, then this tree is converted into
a phenotypic tree AP corresponding to the function that the
algorithm is looking for. The tree AP is obtained by replacing
any genotypic subtree A′

G containing a root node X and N+1
edges by a phenotypic subtree A′

P where the root corresponds
to the first edge of A′

G (corresponding to a function of arity
N ), and where the N edges correspond to the number of edges
2 to N + 1 of the tree A′

G. The complete phenotypic tree is
obtained by performing all the replacements but the grammar
is not required during this process. The Polish notation is
applied: the node pointed by the first edge of each node
encodes the function and the following nodes its arguments.
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Fig. 2. Conversion of genotypic trees into phenotypic trees.

IV. THE GRAMGEN OPERATORS

1) Terminal operators: In the next five sections the
basic operators will be detailed: the terminal operators, the
queue operators, the initialisation operators, the crossover
and mutation operators. The terminal operators correspond to
atomic units for the phenotypic trees produced by GP. Two
kinds of terminals can be distinguished: the leaf terminals

(arguments or constants), shown in Table I, and functions,
shown in Table II. In the experiments all the terminals and
the majority of the operators introduced in the two tables
have been used, in particular the mathematical operators, the
operators of arity 3 and the operators of arity N . In addition
to the implementation of common functions, a few useful
functions for regression problems have been proposed such
as the functions of arity N with an unspecified number of
parameters in the input, in particular opSOMM (sum of the
arguments) or opAVG (average of the arguments).

TABLE I
LIST OF THE LEAF TERMINALS AVAILABLE TO THE USER FOR THE

REPRESENTATION OF THE TREES

Symbol Description
opFIXED Constant (integer or real) directly specified in the grammar

(for instance, 1.03E-06).
opRANGE Range of integer or real constants (for instance, [4;7]).
opCST Constant randomly instantiated during the creation of the tree

or the node. Its value will not change until the next genetic
mutation.

opARG Argument of the function. Each sample of the training set is
represented by a vector of a known size, so each argument
is instantiated by one of the values of this vector during
the creation of the node. This instantiation is then modified
during a genetic mutation.

opTRUE, opFALSE, opPI, opE, opPINF
(+∞), opMINF (−∞), cstDIVIZERO
(represents the value of a division by
zero), cstOVERFLOW (represents an
overflow such as log(0))

Miscellaneous constants, mainly used for the condition part
of a test.

TABLE II
LIST OF THE OPERATORS AVAILABLE TO THE USER FOR THE NODES OF

THE TREES

Description Symbol
Mathematical operators of ar-
ity 1

opOPP, opINV, opCOS, opSIN, opTAN, opLOGE (napierian log-
arithm), opEXP, opSQRT, opABS, opCEIL, opFLOOR, opACOS,
opASIN, opATAN, opCOSH, opSINH, opTANH, opACOSH, opASINH,
opATANH, opLOG10, opSIGN, opFACT (x!), opSQ (x2), opCUB (x3),
opLOG2, opP10 (10x), opCURT ( 3

√
x), opP2 (2x)

Boolean operators of arity 1 opNOT, opCOMP1 (complement to 1), opCOMP2 (complement to 2),
opSHL (left shift), opSHR (right shift), opROTL (left rotation), opROTR
(right rotation)

Miscellaneous operators of ar-
ity 1

opIP (integer part), opFP (floating part), opRND (round to the closest
integer), opARGN (select the argument N in the current function)

Operators of various arities for
the management of a FIFO file
allowing to deal with tables of
various size (see Fig. 3)

opEMPTY (empty file), opPOP (returns the first element), opPUSH
(piles up the first argument empile and returns the number of piled ob-
jects), opPSUM (sum of all the objects in the file), opPAVG (average),
opPMED (median), opPAND (boolean AND), opPOR (boolean OR),
opPEQUI (returns true if all the objects are identical (all positives or
all equal to null), false in the other case

Mathematical operators of ar-
ity 2

opADD, opSUB, opMUL, opDIV, opPOW, opINF (<), opSUP (>),
opINFE (≤), opSUPE (≥), opEGAL, opDIFF, opPRCT (x ∗ y

100
),

opPRCTA (x ∗ (1 + y

100
)), opPRCTS (x ∗ (1 − y

100
)), opCOMB (Cx

y ),
opPERM (P x

y ), opAPRX (|x − y| < 1E − 4), opMOD (modulo),
opQUOT (integer division), opXRT ( y

√
x)

Boolean operators of arity 2 opAND, opOR, opXOR, opXSHL (x is left-shifted of y bits), opXSHR
(x is right-shifted of y bits), opXROTL (left rotation of x of y bits),
opXROTR (right rotation of x of y bits), opIMPL (boolean implication),
opEQUI (boolean equivalent)

Operators of arity 3 opITE (if x > 0 then y else z), opLERP (linear interpolation between
y and z: x ∗ (z − y) + y), opINTER (inclusion in an interval: true if
x ∈ [y; z], false in the other case)

Operators of arity N . The be-
havior of these operators de-
pends on the number of edges
that are associated with.

opSOMM (sum of all the arguments of the operator), opPROD
(product), opAVG (average), opMED (median), opMIN, opMAX,
opETYP (standard-deviation), opVAR (variance), opSQSOM (sum of
the squares), opSQAVG (average of the squares), opMAND (boolean
AND), opMOR (boolean OR), opMEQUI (true if the equivalence of
the arguments is verified), opSELECT (selection of the value of the
argument N )

The user may select the terminals to use in the genetic
programs, either implicitly in the form of probabilities in the
generated trees, or directly by the definition of the production
rules. If needed, the setting up of the appearance probability
of a terminal symbol (or a non terminal symbol) can be
defined by repeating the occurrence of this symbol several
times in the production rule. For instance, the rule S → opADD
opADD opADD opSUB defines the appearance probability of
the addition operator as 75 %.
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Fig. 3. Grammar using the opPUSH operator.

2) Queue operators: To solve some problems, operators
to facilitate the management of First In, First Out (FIFO)
queues are needed. FIFO queues allow a function to build
tables where its size is known only during their execution.
So their size can dynamically increase or decrease depending
on the input attributes of the symbolic expression. Two queue
operators are designed: the opPUSH and opPOP operators are
these special operators. As a tree is interpreted by depth-first
search (the child nodes of a given node are computed before
its parent), it is consequently possible for a node to carry out
computations on a file encoded in one of its child nodes. The
operators allowing this kind of computation are introduced
in Table II. Figure 3 shows a grammar construct using such
operators, a genotypic tree built using this grammar, the related
phenotypic tree and its semantic interpretation.

If needed, some inter-type conversions may occur in
the nodes during the assignment of a value. For instance, a
strictly positive constant returned by a mathematical operator
is converted into a boolean constant equal to true. A null or
negative value is converted into false, and the values true
and false are respectively converted into 1 and 0. Lastly, a
parameter is integrated into each one of these operators to
define if the operator is commutative or not. This parameter
is applied during the structural comparison of two trees, and
that is used as a diversity criterion in the termination operator.

3) Initialisation operator: In GramGen, the initialisa-
tion operator for genetic individuals has to select the gram-
matical rules as well as the order of their application regarding
a given number of constraints. This operator is applied to
create the first genetic population or new edges claimed by the
mutation operator. If several possibilities arise, the choice of
the production rule is done according to several criteria, based
on the size of the trees and the desired depth. The two principal
steps devoted to the construction of the new individuals are as
follows:

• determination of the height H(X) or the smallest number
of terminals T (X) that it is possible to generate in the
best case for each symbol X ,

• during the construction of a subtree or a complete tree,
determination of the symbol to use according to a given
random probability related to H(X) or T (X).

The first step is performed only once, at the time of the
grammar parameterization. This step is described in Algorithm
A2. Figure 4 shows a parametrized grammar. The parametriza-
tion concerns the height and the minimal number of symbols
that can be obtained in a genotypic tree derived from a given
symbol. The computing of the maximum values are not very
interesting for most grammars because they are infinite. The
main interest of this algorithm is that it converges even in the
case of full-recursive grammar rules (for instance, A → A).
In this case, these rules are automatically ignored.

S → E
E → OEE | V
O → opADD | opMUL
V → opARG | opCST | 5.34

Symbol H(Symbol) T(Symbol)
S 3 1
E 2 1
O 1 1
V 1 1
opADD 0 1
opMUL 0 1
opARG 0 1
opCST 0 1
5.34 0 1

Fig. 4. Example of a grammar and its parametrization.

The second step is performed during the creation of
the individuals or each time a genetic operator requires the
creation of a subtree. This step is presented in algorithm A3.
The parameters of the algorithm are the following: a grammar,
a non-terminal symbol (either the start symbol S, or another)
and the constraints defining tree size and tree height. The
result of the algorithm is a complete genotypic tree or a
subtree which can then be included in a larger tree, which
will be converted into a phenotypic tree before the evaluation
of the individual. The algorithm performs its computing in
an exact constraint environment, that is, the size specified by
the user in terms of number of nodes is always respected.
For instance, if the user selects an even size N , and that
grammar can only produce trees with odd sizes, then there
is a probability of 0.5 that an individual of size N − 1 is
produced, and 0.5 for an individual of size N + 1. If the user
specifies a null or a negative value for the size, the produced
tree will be as small as possible. If some variable sizes are
required, the user has to choose a range of acceptable values,
for instance, trees containing from 3 to 15 nodes. Then the
algorithm randomly selects a value in this range and uses it as
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ALGORITHM A2
INITIALISATION OF THE SYMBOLS

 Height(X) - Function computing the minimal height of
a symbol X
 Comment - H(X) is an attribute of the symbol X
 Result - The height of the symbol X

let h := ∞
for each disjunction D of the rule X do

let hc := 0
for each conjunction C of D do
hc := Max(hc,H(C))

end for
h := Min(h, hc)

end for
Height(X) := h+ 1
————————————————–
 Size(X) - Function computing the minimal size of a
tree generated by the derivation of a symbol X
 Comment - T (X) is an attribute of the symbol X
 Result - The size of the symbol X
let s = ∞
for each disjunction D of the rule X do

let sc = 0
for each conjunction C of D do
sc = sc+ T (C)

end for
s = Min(s, sc)

end for
Size(X) := s
————————————————–
 Parameter - The list of the symbols L = Vt ∪ Vn of a
grammar G
 Results - A parameterized grammar: the height and the
minimal size of each symbols of L
for each symbol X of L do

if X is terminal then
H(X) = 0
T (X) = 1

else
H(X) = ∞
T (X) = ∞

end if
end for
repeat

for each non terminal symbol X of L do
H(X) := Height(X)
T (X) := Size(X)

end for
until the attributes of the symbols in L have converged
Returns the parameterized grammar

Algorithm 2: Function InitSymbols

ALGORITHM A3
ALGORITHM FOR THE CREATION OF GENOTYPIC
TREES FROM A GRAMMAR

 Parameters - A parameterized grammar G, a non
terminal symbol A, the requested size or height fask for
the generated tree
 Result - The created individual
 f(X) is the criterion to optimize. Either H(X) (the
height of the subtree generated by the symbol X), or
T (X), the size of this subtree
 Choice(L) is a function which selects in a uniformly
random way an element of the set L
 ψ(n) is a function that gives the selection probability
of a symbol if the subtree generated by the derivation of
this symbol adds in the final tree more than n symbols
compared to the size expected by the user

let R a tree with a root node A
while R contains a leaf which is a non terminal symbol
do

let L the list of the leafs in the tree R
let fmin := 0
for each symbol X of L do
fmin := fmin + f(X)

end for
let Lnt the list of the non terminal symbols of L
let T := Choice(Lnt)
for each disjunction Di of the right part of the rule T
do

let fadd := f(Di)
let fsub := f(T )
Di,suppl := fmin + fadd − fsub − fask

Di,proba := ψ(Di,suppl)
end for
Choose a disjunction D ∈ D1, . . . , Dn of the rule T
using the selection probabilities Dproba

let Rins a tree with a root node T and where each
edges is one of the conjunctions of J
Replace in the tree R the symbol T by the subtree Rins

end while
Returns R, a tree with a root node A where the leafs are
terminal symbols

Algorithm 3: Function TreeCreation

parameter. The algorithm is called as many times as required to
constitute a complete population. Thus, it is possible to obtain
a population including trees where sizes can be specified by
various probability functions: uniform, linear, Gaussian, etc.
In our case, a linear function is used.

The determination of the non terminal symbol to derive,
when the current derivation tree contains several symbols
(known the derivation style), is not performed from the left
(leftmost derivation), nor from the right (rightmost derivation).
In fact, the best results have been obtained each time by ran-
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domly choosing the non terminal symbol in the tree currently
in derivation. Moreover, that guarantees some diversity in the
pool, even if the grammar is badly written.

When a disjunction needs to be derivated, a choice has to
be made to select the best symbol B. This choice is related to
the number of symbols needed to complete the current tree and
the estimation of the number of symbols that can be generated
by a derivation of B. Given a grammar G, a non terminal
symbol B and a criterion F (F could be the expected size
or height of a subtree generated by B), the algorithm uses
a function ψ(n) returning the selection probability of B if
the subtree generated by the derivation of B adds in the final
tree more than n symbols compared to the size expected by
the user. It is clear that this probability should be low for
high values of n. Several probabilistic functions for ψ(n) (see
algorithm A3) have been selected, among them:

ψ1(n) =
1

a+ |n| (2)

ψ2(n) = e−
(a∗n

2)
b (3)

where a and b are constants.
The function ψ2(n) was found to have good selection

qualities using the constant values of a = 2 and b = 5.2.
4) Crossover operator: The proposed operator for cross-

ing over two genetic trees is based on the following principles:

• the generated individuals must remain coherent at the
output of the operator. In particular, the grammar rules
must always be verified as well as the arities of the nodes
(a terminal operator should never change its arity),

• the selection probability of each node must be identical.
Even if the genetic recombinations actually implement
a very complex chromosomal system, it is preferable to
keep the same probabilities of mixing, as in the case of
a more simpler representation. For instance, a root node
is not selected more frequently than a leaf node, so that
the modifications are smoother,

• the algorithm must bring a guarantee that the resulting
offsprings are different from the parents.

In conclusion, only subtrees coming from the same
grammatical symbol are safe to be exchanged. The crossover
operator, Algorithm A4, only deals with the genotypic descrip-
tion of the trees. The use of the genotypic trees guarantees
the three points mentioned above. For instance, two subtrees,
even deriving from the same terminal operator, will not be
exchanged if they are not in the same grammatical context, i.e.
if they derive from two distinct grammar rules. The resulting
trees are converted into phenotypic trees and inserted in the
new population.

Two remarks can be stated concerning Algorithm A4.
First, the only case in which the offsprings would be identical
to the parents is the case of a filiform genotypic tree. That
corresponds to a grammar containing only one terminal sym-
bol, consequently the corresponding phenotypic tree consists

ALGORITHM A4
CROSSOVER ALGORITHM IN GRAMGEN

 Parameters - A1 et A2 are the two genotypic trees to
cross
 Results - A′

1
et A′

2
are the two resulting genotypic trees

 S(A) is a function which returns the list of the
left-defined symbols of the grammar G defined in the tree
A
 Deriv(A,X) is a function which returns the list of the
nodes in the tree A containing the symbol X
 Choice(L) is a function which choose in a uniformly
random way an element of the set L
 GetChild(A,n) is a function which returns the child
number n of the node A
 X is a symbol of the grammar
 n1 and n2 are nodes from genotypic trees

for each tree A ∈ {A1, A2} do
while CountChild(A) = 1 do
A := GetChild(A, 1)

end while
end for
let L := S(A1) ∩ S(A2)
let X := Choice(L)
let N1 := Deriv(A1, X)
let N2 := Deriv(A2, X)
let n1 := Choice(N1)
let n2 := Choice(N2)
- Exchange n1 and n2 in the trees A1 and A2

- Returns the resulting trees A′
1 and A′

2

Algorithm 4: Function Crossover

of only one symbol. In this case, the crossover cannot do better
than exchange this symbol with one of the corresponding
symbols of the other parent respecting the grammar. Second,
the algorithm uses a parameter constraining the size of the
generated trees. After the crossover, it is possible that this
criterion is not respected any more. So, this criterion is verified
a posteriori in the evaluation function.

The crossover parameters set by the user (besides the
grammar) are the following:

• the percentage Q of individuals to be crossed. Most of
the literature [8], [16] considers that 80% is an acceptable
value, but we obtained good results with a comprised
value between 70% and 95%,

• the crossover selection type (roulette wheel, tournament,
etc).

5) Mutation operator: The mutation operator contains
two significant characteristics; it imposes fewer parametriza-
tion by the user and it preserves almost all the material
from the parent. This has led us to define three different and
complementary sub-operators applied in a uniformly random
way. Each one of these operators takes as input a genotypic
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tree and returns the modified tree. The conversion into a
phenotypic tree is necessary before the insertion into the new
population for the calculation of the evaluation function. In all
cases, the constraints (which have been explained earlier) for
the crossover operator have to be also respected (coherence,
probability of selection, production of new offsprings).

The three sub-operators are as follows:

• Mutation of a node: performed by removing one of the
nodes in the tree and replacing it by an equivalent one
generated by the grammar.

• Mutation of a terminal: performed by changing one of
the values of a numerical terminal (a constant or an
argument).

• Mutation by self-crossing: performed by crossing the
tree with itself. This sub-operator is complementary to
the other ones because it can, for instance, reverse the
numerator and the denominator of a ratio, which is not
possible with the other sub-operators.
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Fig. 5. Mutation operators in GramGen. Note that rand(a,b) is a function
returning a random value between a and b.

For the mutation operator (Figure 5), the user has to
define the following parameters:

• the percentage Q of individuals to be mutated (the con-
sidered percentages have been set between 5% and 45%,

• the mutation type,
• and in the case of the terminal mutation operator, the new

value is selected in an interval [x−v;x+v] where x is the
previous value and v is a parameter of variation related
to the size of the authorized range for this value (so, this
operator is data-scale independent).

To summarize, the described operators guarantee that the
numerical constraints imposed by the user are respected (for
instance, the size of a tree) as well as the user defined grammar.
Some specific checks can be implemented to deal with the case

of badly conceived grammars. In the case of the last mutation
sub-operator (mutation by self-crossing), the exchange of a
node with one of the progenitors of this node should never be
permitted. However, this can occur with a grammar generating
filiform trees. In this situation, the case is detected and the
non-modified tree is returned.

V. CASE STUDY

A. First experiment (COSLOG)

The goal of the first experiment is to test our algorithm
on a very simple regression problem, called the COSLOG
problem. The algorithm has to interpolate a set of points given
by the function f(x) = cos(log(x)). This function is very
complex compared to the terminal operators available for this
algorithm. The set of available terminals contains (+, −, ∗, /,
|x|). The chosen grammar allows generation of trees with any
number of nodes, but the ideal number of nodes parameter
has been set to 10. In this case, trees of any sizes can be
generated, but the fitness function will penalize trees that are
too small or too large. This will give clues about the ability
of the algorithm to model complex real world functions with
only a limited set of operators. The experiment has been made
more complex by limiting the number of available points: the
training set contained only 20 pairs in the form (x, f(x)).

The learning has been carried out using the set of
parameters shown in Table III.

TABLE III
USED PARAMETERS FOR THE COSLOG PROBLEM.

Parameter Value
Sampling 20 instances
Population size |P| = 50 individuals
Size of the trees 5 to 10 nodes
Termination criterion 50 generations
Operator set {+, -, *, /, absolute value (opABS)}
Terminals {constants (opCST), variable X (opARG)}
Pmut 0.40
Pcross 0.70
Selection operator Direct ranking
Replacing operator Direct ranking
Number of offsprings per generation |P|
Elitism 1% (high)
Duration 2 min (2.5 GHz CPU) for 20 instances
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Fig. 6. The COSLOG problem. Left part: function f(x) = cos(log(x)) and
the training set. Right part: the function f(x) (dashed line) and the function
found by the algorithm (dotted line).

Figure 6 shows the COSLOG problem. The left part
shows the function f(x) for a training set of 20 points. More
points have been sampled in the interval (0; 0.2] because of the
shape of the function. The right part shows the function f(x)
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(dashed line) and the function found by GramGen (dotted
line). A horizontal logarithmic scale has been used in the
second figure to facilitate visualization.

Equation 4 represents the formula which was finally
generated and Equation 5 is its simplified form.

fGG(x) =
(0.316 + 0.833) ∗ |x|
0.833− 0.741 + x

−(0.316 ∗ 0.316 ∗ 0.741 ∗ x ∗ 0.741) (4)

fGG(x) =
1.149 ∗ x
0.091 + x

− 0.055 ∗ x (5)

Discussion: A high correlation has been observed be-
tween the function interpolated and the obtained formula. The
genetic evaluation of the individual corresponding to fGG(x)
is 0.946 and the correlation coefficient between f(x) and
fGG(x) is 0.926. According to Figure 6, this correlation is
also relatively high for small (∼ 0.1) and high (∼ 5) values
of x, despite the relative simplicity of the obtained formula.
Consequently, GramGen achieves a good performance for the
small data set and for the complex function shown in this
experiment.

B. The Multispectral Vegetation Index

This case study concerns the discovery of formulas in-
dicating vegetation pixels on remote sensing image. In these
problems, the learned classes have to be modeled in the form
of functions assigning a real value to a pixel. In general,
the assigned value indicates the proportion of a given ground
cover in a given pixel. Thus, the problem can be viewed as a
symbolic regression problem. The adequate representations for
these rules are trees in which the operator located in the top
node is able to produce continuous values. In GramGen, this
value is always produced by a mathematical operator located
at the top of the tree.

The accuracy of the obtained function is considered the
most important parameter. Accordingly, the following values
have been used: Cfun = 0.95, Csize = 0.05, Ccst = 0 and
Carg = 0. The ideal and the maximal number of nodes of
a tree is between 10 and 30 but this size depend on each
problem.

Two indices concerning the composition of a mixel in
vegetation have been analyzed. The first index, well-known
in remote sensing, is the NDVI index (Normalized Difference
Vegetation Index):

NDVI =
C1 − C2

C1 + C2

(6)

where C1 and C2 are two variables depending on the
remote sensor.

This index allows to estimate the composition in terms
of vegetation of the spectral samples. This equation uses

the fact that the solar radiation is more strongly reflected
by a vegetation in full growth in the near infrared than in
shorter wavelengths located in the visible part of the spectrum
[12]. Generally, with the VEGETATION sensor of the satellite
SPOT, XS3 is used for the variable C1 and XS2 for the variable
C2. With the hyperspectral images, the channels have to be
chosen on a case-by-case basis, according to the wavelengths.
In our experiment, the index was analyzed on multispectral
data (SPOT satellite, 1100x900 pixel instances, 3 bands) and
hyperspectral data (CASI airborne sensor, 329 instances, 288
bands).

The second index, called ILim, has not been yet ex-
pressed, to our knowledge, using a standard formulation. Its
purpose is to determine the proportion in the ground of a
plant known as Limonium Narbonense, more commonly called
Lavender of Sea, usually found in the marshes and the clay
soils. This vegetation class is interesting within the framework
of studies for safeguarding the coastal environment. For this
study, the MIVIS images (airborne sensor, 397x171 instances,
20 bands) were used. More information about the CASI and
the MIVIS sensors can be found in [17]. In this experiment,
a generic grammar has been proposed to produce any tree
containing the operators specified in Table IV. The goal of the
algorithm is to discover the formula of the index according to
a large set of operators. It is up to the algorithm to respect this
constraint (or not) according to the evaluation of the generated
trees. The algorithm has been also tuned to find the set of
parameters bringing the best results, shown in the Table IV.
The division operator, just like in the next studies, performs a
protected division. The terminal operator set has been selected
because it corresponds to the operators frequently applied by
geographers.

TABLE IV
USED PARAMETERS FOR SPOT.

Parameter Value
Sampling 100 instances (< 1% of the data)
Population size |P| = 200 individuals
Size of the trees 5 to 10 nodes
Termination criterion 200 generations
Operator set {+, -, *, /, sum of arity N (opSOMM),

absolute value (opABS)}
Terminals {constants (opCST), spectral channels

(opARG)}
Pmut 0.15
Pcross 0.70
Selection operator Direct ranking
Replacing operator Direct ranking
Number of offsprings per generation |P|
Elitism 1% (high)
Duration 7 min (2.5 GHz CPU) for 5000 instances

The discovered formula is presented in Equation 7.

fSPOT =
1.065 + x3 − |1.065 + x2|

|x3 + x2|
(7)

It is easy to notice that the formula can be reduced to the
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NDVI index:

fSPOT =
x3 − x2

x3 + x2

(8)

Discussion: The original index has been directly discov-
ered by the algorithm from the image without using prelim-
inary knowledge. The used grammar is generic and uses a
few parameters and typical values of crossover and mutation
probabilities. The discovered formula, imitating exactly the
target index, is the one that obtained the maximal performance
both in terms of prediction of the values of the test data but
also in terms of the number of nodes desired by the user.

C. Hyperspectral NDVI Index

The same algorithm as above has been applied on images
captured by the CASI satellite which has a higher number of
sensors, where several of them were highly correlated. The
algorithm has to correctly choose the sensors C1 and C2 in
Equation 6. The used parameters are presented in Table V.

TABLE V
USED PARAMETERS FOR CASI.

Parameter Value
Sampling 9000 samples (1% of the data)
Population size |P| = 200 individuals
Size of the trees from 10 to 20 nodes
Termination criterion 700 generations
Operator set {+, -, *, /, sum of arity N (opSOMM),

absolute value (opABS)}
Terminals {constants (opCST), spectral channels

(opARG)}
Pmut 0.15
Pcross 0.70
Selection operator Direct ranking
Replacing operator Direct ranking
Number of offsprings per generation |P|
Elitism 1% (high)
Duration 40 min (2.5 GHz CPU) for 160 instances

The increasing number of spectral channels led us to
increase the number of generations and the desired size of
the trees. The discovered formula is as follows:

fCASI = 2.253 · 2.253 · x11 − 2.253 · x8 − x4

6.498 · x12 + 6.498 · x8 − 6.289
(9)

Discussion: It is difficult to evaluate the value of this
formula by direct comparison with NDVI. Therefore the results
of the two indices have been compared using the correlation
ratio. Figure 7 shows an extract of a CASI image computed
by these two indices.

Note that the two images are very similar: the correlation
between the NDVI index and fCASI is very high (C = 0.986).
However, this formula contains four different attributes rather
than two. The index used to generate the data was as follows:

NDVICASI =
x11 − x3

x11 + x3

(10)

Fig. 7. On the left: a part of a CASI image. In the middle: percentage
of vegetation according to NDVI. On the right: percentage of vegetation
according to fCASI .

In the formulas, a confusion between x11 and x12 on one
hand, and x3 and x8 on the other hand can be explained by
the correlations between these sensors are very strong (0.868
and 0.997 respectively). Summing up, the formulas determined
for SPOT and CASI are rather short and reliable to ground
truthing. The formulas discovered by the genetic programming
algorithm, even if they are not exact, can always be substituted
with the NDVI index. For example, in the case of searching
sensors other than the standard ones to obtain the same result
(i.e. in order to avoid noisy channels).

D. Multispectral ILim index

In this case study a problem of symbolic regression of
mixed pixels has been addressed. In general, the values of
pixels on remote sensing image result of spectral signatures
of diffent ground classes. In the project TIDE [17], the images
of Venise lagoon were classified taking into consideration the
vegatation classes. The composition values in Limonium of
the samples (mixels) were much more varied in the MIVIS
data than in the CASI or the SPOT data. Figure 8 presents
the statistical distribution of the samples according to their
composition in Limonium or of another class for the counter-
examples. In the experiment, 975 samples have been used,
including 50% samples containing a dominant proportion of
Limonium and 60% containing at least 5% of Limonium. The
counter-examples are mainly water and ground pixels but have
been selected from all the available classes. The MIVIS image
includes 20 spectral channels and each mixel has a resolution
of 2.6 m2. 50% of the instances were used for the training
set, and the remaining for the testing set.

Distribution of the samples in Limonium
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Fig. 8. Data set for the ILim index. Left: distribution of the samples according
to the quantity of Limonium in the samples. Right: distribution of the classes
of the counter-examples.

The training set was suitable to validate the ILim index
with various proportions of Limonium in the samples. It should
be noted that such a database is rather rare since each sample
had to be hand-validated for agreement with the spectrometric
data on the ground and the visual analysis of the pictures
acquired during the ground-truthing.
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It should be noted that the discovery of such an index was
not trivial. The use of a grammar construct was very useful
to reduce the search space. Several experiments with various
grammars were carried out using the parameters presented
in Table VI. The grammars were composed of operators and
spectral sensors but not constants.

TABLE VI
USED PARAMETERS FOR MIVIS.

Parameter Value
Sampling 100 samples (10% of the data)
Population size |P| = 250 individuals
Size of the trees from 10 to 30 nodes
Termination criterion 500 generations
Operator set {+, -, *, /, absolute value (opABS), opINV,

opSQ, opINF, opSUP, If . . . Then . . . Else,
opINTER, opRND, opEMPTY, opPOP, op-
PUSH, opSOMM}

Terminals {constants (opCST), spectral channels
(opARG)}

Pmut 0.15
Pcross 0.60
Selection operator Direct ranking
Replacing operator Direct ranking
Number of offsprings per generation |P|
Elitism 1% (high)
Duration 10 to 50 min (2.5 GHz CPU) for 500 in-

stances

The experiments have been conducted with four gram-
mars and generated trees of various sizes. The first three gram-
mars have produced trees having depths located respectively in
the ranges [2; 3], [2; 4] and [3; 5]. In fact, the use of constants
often tends to let the algorithm over-fit the data, and more
importantly, the discovered formulas are less independent than
those without constants.

To illustrate our approach, the fourth grammar will be
examinated, in which the algorithm can generate random
constants. The discription of the grammar is as follows:

# Start symbol
S → EQ24

# Definition of a tree with a depth of 2 to 4, with 3 to 15 nodes
EQ24 → EQ23 | OP EQ23 EQ23

# Definition of a tree with a depth of 2 to 3, with 3 to 7 nodes
EQ23 → OP EQ12 EQ12

# Definition of a simple equation (depth: 1 to 2, nodes: 1 to 3)
EQ12 → Arg | OP Arg Arg

# Definition of the operators and the attributes
Arg → opARG | opCST
OP → opADD | opSUB | opMUL | opDIV | opABS

The symbols on the left in the production rules are
the non terminal symbols of the genotypic trees, and those
on the right are terminal symbols or symbols used for the
derivation. The terminal symbols corresponding to functions
(node operators) are always followed by the symbols that
represent their arguments. To simplify the notation, without
loss of generality, there can be only one node operator by
grammatical disjunction. For instance, the non ambiguous term
« opMUL opARG opCST » indicates a multiplication between
one of a sample attributes (opARG) and an instantiated con-
stant (opCST).

The evaluation of the discovered formulas are shown in
Table VII, with the performance evaluation on the training
set and the evaluation of the tree size, their accuracy on
the testing set (computed by the correlation compared to
the expected compositions) and the number of generations
required to produce the final formulas.

TABLE VII
FORMULAS FOR THE ILim INDEX, WITH SOME CHARACTERISTIC

PARAMETERS.

Formula Evaluation Correlation Generation
1 b19−b14

b17
0.859 0.802 14

2 b15·(b19−b16)
b1·b6

0.904 0.876 224
3 b19·b15

(b2−b9)+(b8·b16)
−

(b2−b9)+(b8·b16)
b19+(b8·b16)

0.668 0.814 463
4 b17−b15

b4·0.985
−

0.938
b17−b18

0.694 0.858 94

Discussion: One can notice than the sensors b16 (740
nm) and b19 (800 nm) are important for ILim (they appear
eight times in the formulas). In spite of their simplicity, a
very high correlation is observed for the first two formulas.
The first formula has been obtained very quickly, in spite of
the low number of training samples. GramGen was thus able
to discover short formula that were relatively expressive for
the expert (because they were similar to the NDVI index) in a
relatively short time. The learning time was short compared to
the size of the search space. For instance, for a tree containing
five arguments on the leaf level and 20 attributes, as in the
formula 2 in Table VII, it was necessary to evaluate 205 (more
than 3 million) combinations, without counting the operators.
Note that only basic operators have been tested and rather
simple grammars. The use of operators specific to the field of
study would undoubtedly improve the results.

VI. CONCLUSION

In this paper, a new approach to discover rules able to
solve symbolic regression problems by grammar-based GP is
proposed. In general, the trees are a powerful representation,
but are sometimes difficult to understand. This representation
requires the redefinition of the genetic operators in a such way
that the generated individuals are coherent, according to the
grammar. In the paper, specific attention has been given to
the legibility and the complexity of the trees by integrating
thresholds defined by the user. The thresholds control the
number of nodes, the height of the trees and the expected
accuracy using a small number of parameters.

Various tests have been carried out with this new ap-
proach using many grammars. Generally, in terms of accuracy
on the testing set, the obtained results have been acceptable,
however the most comprehensible trees have been obtained
with precise grammars. Concerning the comprehensibility, the
question of knowing why a tree is more comprehensible only
because it is generated by a grammar written by an expert
remains an interesting research perspective. In many fields,
experts are still accustomed to precise schemata, and it is
advisable to respect this predisposition.
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In spite of the complexity of the mutation operator, the
bulk of the computating is led in an automatic way to use the
grammar which discharges the user from parameter setting.
Nevertheless, this operator can be improved. For instance, the
principle of the self-adapting mutation [1] has not been tested
yet within the framework of GramGen.

Real-world problems such as remote sensing image re-
gression impose a large search space upon GramGen which
it must be capable of searching efficiently. The presence of
constants involves a considerable increase of the size of this
search space. Techniques in which some constants values
are freezed and locally optimized have been described in
the literature, but they have not been yet implemented in
GramGen. During the experiments, the amount of use of
the opCST operator was limited, which restrains the effect
of over-fitting and returns formulas which are slightly more
adapted to the new data. Another interesting point concerns the
anticipated algebraic simplification of the obtained formulas
during their evolution, either to reduce the search space, or to
deliver more understandable formulas. Resarch work in these
areas is needed and they will undoubtedly be considered as
future research directions.
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