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In this article, two learning classifier system based classification techniques are described to 

classify remote sensing images. Usually, these images contain voluminous, complex, and sometimes 
erroneous and noisy data. The first approach implements ICU, an evolutionary rule discovery system, 
generating simple and robust rules. The second approach applies the real-valued accuracy-based 
classification system XCSR. The two algorithms are detailed and validated on hyperspectral data. The 
comparison of the system includes differences in evolution accuracy and parameter refinement. 

���������������
: Remote sensing image, classification rules, high resolution image, hyperspectral image, 

supervised learning, evolutionary learning, genetic algorithm, classifiers system.
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 Dans cet article, deux méthodes de classification d’images de télédétection, basées sur les 

systèmes de classifieurs LCS, sont décrites. Généralement, ces images contiennent des données 
volumineuses, complexes et parfois erronées et bruitées. La première approche met en œuvre ICU, un 
système de découverte de règles évolutionnaire, produisant des règles simples et robustes. La seconde 
approche applique le système de classifieurs XCSR, basé sur des vecteurs à valeurs réelles. Les deux 
algorithmes sont détaillés et validés sur des données hyperspectrales. Enfin, ils sont comparés en termes 
de qualité d’évolution et de raffinement de leur paramètres. 

#���� ��$ 
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: Images de télédétection, règles de classification, image haute résolution, image 

hyperspectrale, apprentissage supervisé, apprentissage évolutif, algorithme génétique, système de 
classifieurs.
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The emergence and the improvement of remote sensing, aircraft simulation, airborne and spaceborne 
sensor systems as well as other kinds of such survey technologies has considerably enhanced our means to 
explore and to collect data. However, this rapid increase in data results in more time and cost for storage as 
well as for the analysis and the mining of the data. At the same time, a lot of useless information can hide 
valuable information. These observations force data miners to focus on elaborated and sophisticated 
algorithms to overcome this rapid data growth. 
 
For many years, the design of efficient and robust image classification algorithms has been the most 
important issue addressed by remote sensing image users. Strong effort has been devoted to elaborate new 
classification algorithms and improve techniques used to classify statistical data sets [Bock, 1999; Lanzi, 
1997; Wilson 1995; Wilson 1998]. Relatively few data miners in the machine learning community have 
considered how classification rules might be discovered from raw and expertly classified images. This paper 
presents the potential contribution of evolutionary-based techniques to discover such rules. The unique 
source of information is a remote sensing image and its corresponding classification furnished by an expert. 
The images, registered by various satellites (e.g. SPOT, CASI, Quick Bird), generally contain voluminous 
data. Sometimes they are very noisy due to the presence of various details in a high spatial resolution or 
unfavorable atmospheric conditions at the time the images were acquired. These data can embrace different 
cameras having various spectral and spatial resolutions [Quirin 2002; Korczak 2003a; Weber, 1995; DAIS 
2001]. 
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The aim of this research is the performance evaluation of others classifier systems in a domain of remote 
sensing. It appears that learning classifier systems are well suited to remote image mining. They generate 
classification rules able to adapt themselves according to the available data, environment, and the evolution 
of classes. This research reports on two evolutionary classifier systems: ICU and XCS. ICU, developed at 
the LSIIT [Quirin, 2002], is an evolutionary rule discovery system combining a genetic algorithm and a 
population of classification rules describing constraints for each pixel from the data. XCS is a learning 
classifier system, developed by [Wilson, 1995; Wilson, 1998], that evolves a rule set online based on 
prediction accuracy and a niched genetic reproduction [Lanzi, 1997]. The two algorithms were tested on 
hyperspectral remote sensing data. 
 
The paper is structured as follows. Basic terms and properties of hyperspectral images are introduced in 
Section 2. Section 3 describes the two algorithms ICU and XCS. In this section, the main components and 
the quality measures of the two methods are explained. A CASI image is analyzed in section 4 and 
comparisons are presented in section 5. 
 
 
 
 
�� +\SHUVSHFWUDO�UHPRWH�VHQVLQJ�LPDJHV 
 
 
An hyperspectral image is a set of two dimensional arrays , &'( ,,

where �;�<� is respectively the width and 

the height of the image and S the number of spectral channels (or spectral bands). The term K\SHUVSHFWUDO 
refers to an image which includes more than 20 spectral bands (similar to those produced by ROSIS and 
DAIS [DAIS01]). Conversely, the term PXOWLVSHFWUDO is used in the case of a low number of spectral bands, as 
CASI and Quick Bird remote sensors [Toutin, 2002]. A value ),,( V\[, in this array is the reflectance 
observed on the pixel location �[�\� at the wavelength corresponding to the spectral channel V. A reflectance 
value corresponds to the intensity of the response obtained from the ground. The input space of a 
classification problem can be viewed as an ordered vector of real numbers. For each pixel, the spectral 
signature of this pixel was used. Fig 1 shows the spectrum of reflectance of a pixel from a hyperspectral 
sensor (type MIVIS). Each spectral channel has roughly 10 nanometers in width. 
 
 

 )�* +-,�.�/10���
����2�! 3��45����4�% ��
�� �!6�
��7�5������� 8����"4	�����"0�* 9���%:4����; <��=��>=���0����	�!0���
����	�!%:���!6������5#"? @A? /
 
The image data is very voluminous; typically 20 to 200 spectral channels in an image and their size can 
reach 8000 x 12000 pixels. Sometimes, half of bands is noisy because of sensor defects or atmospheric 
absorption of reflectance value in low wavelengths (see Fig 2). It can be noticed that the analysis of this data 
provides a combinatorial problem. 
 
To illustrate our approach, two kinds of multispectral images have been used: 

− &$6,� GDWD. Airborne spectrometer, 1175x673, 15 spectral channels (0.43µm - 0.87µm), high 
resolution (1.3m). This image has been pre-processed by geometric correction and warping by first 
order polynomial warping and nearest neighbor re-sampling. 
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− 4XLFN�%LUG�GDWD. Satellite, 619x238, 4 spectral channels (0.45µm - 0.90µm) in multispectral or one 
channel in panchromatic, very high resolution (2.8m in multispectral, 0.61m in panchromatic). Same 
pre-processing has been applied as before. The advantage of this sensor resides in the ability to be 
able to reprogram the analyzed wavelengths. 

 
Learning and testing were applied on subsets of these images. Subsets contain 142x99 points, and only 
1540 points were validated by human ground truthing (expertise ratio: 11%). Then, according to the 
validation strategies used (hold-one-out, cross-validation), testing sets represent 20% to 50% of the original 
validated image points. Fig 3 shows Quick Bird data for the Lagoon of Venice and the corresponding set of 
validated points. The orange rectangle is the area in which all validated points are situated. It should be 
noticed that the proportion of these points to the whole image is very small - about 0.01%. 
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The idea of rule mining is to discover a pool of classifiers, where each classifier, taking a pixel as input, 
returns its class. The discovery of a classification rule is a combinatorial problem. The search space is very 
large,.it depends on the size of the image, the pixel spectral resolution, and the rule encoding. Evolution-
based approaches and particularly Learning Classifier Systems (LCS, [Horn, 1994]) are specifically designed 
to search efficiently the space of classifiers. 
 
For a long time, many generic classifiers systems were developed to explore the potential of these 
techniques including ZCS [Wilson, 1994], LFCS [Bonarini, 2000], S-classifiers [Lanzi, 1999], ICU [Quirin, 
2002] and XCS [Wilson, 1995; Wilson, 1998]. Two systems have been arbitrary chosen, ICU and XCS. ICU 
is an evolutionary rule discovery system combining a genetic algorithm, a population of classification rules 
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describing constraints for each pixel from the data, and a set of methods used in rules selection and 
accuracy assessment. In XCS, fitness is based on prediction accuracy and the classical binary strings of 
classifier systems were replaced by real-values vectors [Wilson, 2000]. In the following sections, the main 
components of ICU and XCS are described. 
 
 
���� ,&8�
�
������ 2YHUYLHZ�RI�WKH�DOJRULWKP�
�
To discover a classification rule, ICU uses a Michigan-like learning classifier system representation, in which 
each rule is encoded by one individual [Quirin, 2002]. Moreover, separate pools are used for each class to 
discover classification rules. Only one rule is kept for each class at the end of a run. Steady-state strategy is 
used for reproduction and replacement. The pool contains only 100 to 200 individuals for the discovery of 
each class and 2000 generations were used. The most common values for the crossover and mutation rate 
were tested (e.g. )05,0;8,0();( =Pχ ). After having tested a number of selection methods as randomly, 
elitism, roulette wheel and tournament, a roulette wheel selection based on the rank in the pool of the 
individual’s fitness was retained for the replication of individuals and tournament for generational 
replacement. 
 
Classification rules are symbolic expressions and describe conditions to be held and actions to be taken if 
the conditions are satisfied. From a functional point of view, a rule represents a piece of knowledge about a 
class by a conditional expression, such as LI� �FRQGLWLRQV!� WKHQ� �FODVV!. The “FRQGLWLRQ” part of a rule 
specifies a constraint in the system such as value, color, form, shape, etc, corresponding to conditions that 
must be fulfilled in order to activate the rule. The “FODVV” part defines the class of the instance currently 
treated by the rule given the appropriate conditions are satisfied. One asserts that the evolved rules should 
be rapidly evaluated and easy to interpret by any user. As a result, condition representation using the 
concept of an interval could be fully adequate for remote sensing image classification. In terms of machine 
learning, the rules have to be absolutely specific, meaning that they have to cover the extreme maximum 
and minimum pixels belonging to any given class. A short discussion about the representation of the rules 
follows, but we refer the reader to [Korczak, 2003] for more information. 
 
Before rule specification, recall that a pixel is encoded as a spectral vector, describing values of reflectance 
for the Q bands of the remote sensing image, i.e. a pixel can be considered as a point in a 5 Q  space : 
 
� ][ 321 REEEE�SL[HO S=>< � [1] 
�
In our system, the condition of any rule is built on the concept of spectral intervals defining a given band 
corresponding to a given class. Such intervals are a pair of integer numbers, between 0 and the maximum 
possible value for a pixel of a given band (i.e. 65536 for pixels defined on 16 bits). This solution allows 
partitioning the space of the spectral values in two ranges: the first containing the pixel values corresponding 
to a given class, and the second containing the remainder. 
To precisely specify the class definition, a set of intervals is defined for each band of the remote sensing 
image. Taking into consideration all bands, the condition part is defined as a set of hyper-rectangles in a 5 Q  
space : 
 

� )Mm(
11

T UUVT UT
UWU�X�FRQGLWLRQ ≤≤
==
∨∧=><  [2]�

where MLm  and MLM �denote, respectively, the minimal and maximum reflectance values allowed for a pixel 
belonging to a class & for band L. N is a fixed parameter which defines the maximum number of disjunctions 
allowed. 
 
The chosen representation is mainly due to simplicity, compactness and uniform encoding of spectral 
constraints. During experimentation, the representation has demonstrated rapid execution of genetic 
operators and efficient computing. Of course, one may specify more complex structures using contextual or 
temporal features, however they not only require more sophisticated genetic operators but also more 
powerful computers to perform the calculation in an acceptable amount of time. Additionally, the more 
complicated the representation structure, the more the system might over-fit the data poorly generalizing 
over new instances. 
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������ *HQHWLF�RSHUDWRUV�
�

5XOH�LQLWLDOL]DWLRQ�
 
Generally, in remote sensing, the initial population of classification rules is randomly created from raw 
images and given classes, and then evolved by a genetic algorithm. In this study, in order to efficiently 
develop the classification rules, a genetic algorithm initializes interval values according to spectral limits of 
the classes designated by an expert for valid zones of the remote sensing image. More about initialization 
algorithms can be found in (Kallel, Schoenauer, 1997). Rule initialization considers the values of reflectance 
most frequently recorded in the spectra of a given class. Fig 4(a) presents spectrograms for 5 classes 
(shown in different colors). Quick-Bird data (4 spectral channels, each one in his column) were used. The 
figure shows the most frequent values for a given wavelength in black. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Y�Z ["\7] ^�_�`1a�b�c�d�e�f�[5e	^�ghe	b�a;e	b�i�b!j�d ^�d Z f�j"f�k�d�l�b�m�^�d	^n^!j�mC]	o!_ Y�Z e i�d�[!b!j�b!e	^�d b�mJe�p�q b�ink	f�e;rc�l�f;f�i�b!j"c�q ^�i�i
 
Initial classification rules are created based on the maximum and minimum values observed on the 
spectrogram for each class. Fig 4(b) represents the first generated rules for three chosen class (light blue, 
dark blue and gray), corresponding to the spectrograms of Fig 4(a). Two algorithms for the generation of a 
pool of rules have been proposed, according to the expected solution given by the expert, but allowing also 
some diversity. The first, called MinMax, creates maximum intervals covering all the pixels belonging to a 
given class, and the second algorithm, called Spectro, integrates the spectral distribution density and interval 
partitioning. The proposed rule initialization seems to be well suited for large volumes of data considerably 
reducing the search space by generating initial rules close to the final solution. 
 

&URVVRYHU�RSHUDWRU�
 
Crossover requires two rules, and cuts their chromosome at some randomly chosen positions to produce two 
offspring. In fact, crossover exchanges hyper-rectangles at a randomly selected OHYHO in these rules. A OHYHO 
is the depth of conjunction or disjunction in a rule, as if it was represented by a hierarchical tree, as in 
Genetic Programming. The two new rules inherit some rule conditions from each parent rules. A crossover 
operator is used in order to exploit the knowledge of the rules. Each result of the crossover process has to 
be validated. Validation of the various rule attributes (border limits violation, overpassing, etc) is carried out 
by a process of interval merging. However, merging not only decreases the number of intervals in the rules, 
but also generates some information loss. In fact, in order to avoid premature convergence of rules, it is 
generally important to preserve two distinct intervals instead of a single aggregated one for the following 
generation. On the other hand, it is interesting to note that the positive or negative effects of an interval on 
the quality of the rule can be related to other intervals encoded in the classification rule. 
 

0XWDWLRQ�RSHUDWRU�
 
The mutation operator plays a dual role in the system: (1) it provides and maintains diversity in the 
population, and (2) in combination with selection, it performs local searches. The operator is a bit more 
complex than the previous one. Mutation randomly selects one operation in a OLEUDU\�RI�RSHUDWRUV and applies 
it to a rule selected with a given selection scheme. The selected operator can be: (1) suppression of a 
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spectral channel (band mutation), (2) addition or suppression of a constraint, and (3) shift or cut of a 
constraint in the spectral definition space of the data (interval mutation). The complexity of this operator 
including all the sub-operators ensures that a more diverse offspring population will be obtained. 
 
Band mutation consists of a deletion of spectral bandwidth. Its interest is twofold; first, it enables 
simplification and generalization of a rule; secondly, it allows the elimination of noisy bands that frequently 
appear in hyper spectral images. The fact, there is no addition of a band (algorithm must add several 
constraints in many times) ensuring that generalization is the preferred behavior of the evolutionary process. 
 
Interval mutation allows the addition of a chosen band, eliminating or cutting an interval in two spectral 
ranges. In case of addition, the new rules are completed by a new intervals centered randomly with a user-
defined width. The cutting of an interval is done by random selection of a cutting point within the interval (for 
example, the cutting of [10; 100] can generate two intervals: [10;15] and [15;100]). Mutation such as this 
allows for breakage of continuous spectral ranges, observed in true data. 
 

6WRS�FULWHULRQ�
 
The evolution process converges according to some statistical criteria indicating if the current rule is near to 
a global optimum or if the population of rules will not evolve anymore. In our system, not only the evolution of 
quality of the best discovered rule is taken into consideration, but also a minimum acceptable quality defined 
by a user, a process stability measure, and a maximal number of generations. If one of these criteria is 
satisfied, then the process is stopped. One of the stop criteria used is based on stabilization detection (see 
Eq. [3]) 
 

 (43
4

s
t t

≤−
∑

= 01  [3] 

 
where 4 u  is the fitness of the best rule in the current generation and 4 v  is the quality of the best rule obtained 
during the last k generation. 4 u  is compared to the mean of 4 v  for P generations ( 3N ≤≤1 ). The genetic 
algorithm is stopped when the difference falls below a threshold. 3 represents the maximum period of quality 
stabilization and ( is a maximal variation of this stabilization compared with the current quality. The measure 
effectively detects the stabilization of fitness. 
 
 
������ 4XDOLWLHV�0HDVXUHV�
 
In this section, the principal quality measures, which are commonly used to evaluate the quality of classifiers, 
are introduced. The measures strongly depend on the application domain. In image classification, the 
evaluation is usually based on the confusion matrix containing the classification produced by the classifier 
(, w�x y2z�z ) and the classification given by an expert (, {�|�}~{2� � ). Table 1 defines the variables necessary to compute 
this measure. 
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A very popular measure is a classifier accuracy that measures the proportion of correctly classified pixels 
with respect to all pixels for Q classes; 
 

� 4 ¥2¦�¦2§�¨ � �
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� [4] 

 
The weakness of this measure is that it only takes correctly classified pixels into consideration. To make the 
classification results more specific, three other related measures are defined: 4 ­2­ ¥  positive predictive 
accuracy, 4 ¡�¢2�2¡  sensitivity and 4 ¡�­~¢  specificity.  
 
The positive predictive accuracy,� 4 ­2­ ¥ , measures the classifier reliability of correctly classifying pixels 
compared to all pixels associated by a classifier to a given class: 
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The sensitivity (4 ¡�¢2��¡ � measures the fraction of correctly classified pixels with respect to all pixels classified 
by an expert to a given class (i.e. proportion of true positives). 
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The specificity (4 ¡	­¾¢ ) measures the rate of correctly classified pixels not being in the given class (i.e. 
proportion of true negatives). 
 

 

∑ ∑

∑ ∑

≠= =

≠= ≠== ¿
ÀÁÁ
¿
Â

ÃÃ

¿
ÀÁÁ

¿
ÀÂÂ
ÃÃÀÄ Å�Æ Ç
È

Ç
È

3

3
4

,1 1

,1 ,1  [7] 

�
The four above defined measures may give a faithless image of classifier performance in case of non equal 
distribution of pixels over a set of classes. Therefore, it is recommended to use an additional measure of 
weighted accuracy computed as follows: 
 
 ÉÊ Ë�ÌÉÊ Ì Í2ÊÉÎ É Í�Ï�Ð 441 ⋅−+⋅= )1(  αα  [8] 
 
Parameterα allows the adjustment of the relative weight given to true positives and true negatives. As 
mentioned before, the measure is used for certain classes that are under- or over-represented. By default 
the value of this parameter equals to 0.5, which means that the same importance is given to both measures. 
The proposed measure has a number of advantages; mainly it is independent of the pixel processing 
sequence, invariant of the size of classes, and effective for class discovery with a highly variable number of 
pixels. 
 
The global quality measure is a weighted average of the ÑÒ Ñ Ó�Ô�Õ1  by the size of each class. 
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All these quality measures have been tested for different values of α  and were applied on confusion 
matrices or DCM (see section 5.1 for more information). The statistics in section 6 will be presented using a 
fixed value of α  and the two kinds of confusion matrices. 
 
 
������ 5XOH�VHOHFWLRQ 
 
A pixel passed to the system may activate several rules. The rules are evolved in separate pools and nothing 
is done until the end to force the learning of a given pool to acquire and block itself on a ground not cleared 
by the other classifiers. In this point of view, the other classifiers are not constrained by a strong but false 
rule who ZRXOG� URE their pixels. But at the end or a run, a selection mechanism is needed to choose the 
appropriate rule when more than one rule is available for a given pixel. Two methods have been developed 
that can be used also if no rules are activated by the pixel. Note that this operator acts only in the case when 
0 or more than one rule is activated. If only one rule is activated, no modification of the result is done and the 
rule is kept as is. 
 
The first one, called %HVW6FRUH, simply selects the rule depending on the fitness value obtained from the last 
pass in the learning set. Among the Q activated rules the rule with the best fitness is selected. If Q �, the 
number of constraints Q Þ  of the rules (i.e. for each spectral channel) accepted by the pixel is tested, and the 
rule with the highest Q Þ  wins. In case of equality, the first rule is chosen. This seems to be a naive method. 
The problem comes from the use of the fitness value. Since the value is not directly connected to the data, a 
skew may be introduced in the evaluation method. In fact, the method has shown good results with expertise 
data coming from unsupervised learning. In this case, the algorithm should deal with very accurate classes 
but also noisy classes (ZDVWH classes). In this case, selection by the means of fitness is very useful. 
 
To avoid the use of values dependent only on the paradigm, a second method has been designed, called 
&ORVH&HQWHU. The deviation of the spectrum of the pixel compared to the mathematical center of each 
constraint in the rule is computed. For Q!�, the smallest deviation selects the gaining rule and for Q �, the 
same technique as before is applied. Note that %HVW6FRUH and &ORVH&HQWHU adapt dynamically to the data 
(for each pixel), but as fitness and spectrum represent a continuum between two close pixels, the obtained 
classification is in most cases coherent. 
 
 
���� ;&6�
 
XCS evolves a set of rules, the so-called SRSXODWLRQ of FODVVLILHUV. Rules are evolved by the means of a GA. 
A classifier usually consists of a condition and an action part. The condition part specifies when the classifier 
is applicable and the action part specifies which action, or classification, to execute. In contrast to the original 
LCSs, the fitness in the XCS classifier system, introduced by Wilson [Wilson, 1995], is based on the 
DFFXUDF\ of reward predictions rather than on the reward predictions themselves. Thus, XCS is meant to 
evolve not only a representation of an optimal behavioral strategy, or classification, but rather to evolve a 
representation of a complete payoff map of the problem. That is, XCS is designed to evolve a representation 
of the expected payoff in each possible situation-action combination.  
 Since our system is confronted with real-valued data in this study, we apply the real-valued 
extension of XCS (XCSR) introduced in [Wilson, 2000]. Recently, several studies were reported that show 
that XCS performs comparably well to several other typical classification algorithms in many standard 
datamining problems [Bernadò, 2002; Dixon, 2002; Bernadò, 2003].  
 This section provides a short introduction to the XCS classifier system. For a more detailed 
introduction to XCS and XCSR the interested reader is referred to the original paper [Wilson, 1995], the real-
valued extension [Wilson, 2000] and the algorithmic description [Butz, 2002]. 
 
 
������ 2YHUYLHZ�RI�WKH�DOJRULWKP�
 
As mentioned, XCS evolves a population [P] of rules, or classifiers. Each classifier in XCS consists of five 
main components: 

1. The condition part specifies the subspace of the input space in which the classifier is applicable, or 
PDWFKHV. In our real valued problem, a condition specifies a conjunction of intervals, one for each 
attribute. If the current problem instance lies within all specified intervals, the classifier matches. 

2. The action part specifies the advocated action, or classification. 
3. The payoff prediction estimates the average pay-off encountered after executing action A in the 

situations in which the condition part matches. 



 10

4. The prediction error estimates the average deviation, or error, of the payoff prediction. 
5. The fitness reflects the scaled average relative accuracy of the classifier with respect to other 

overlapping classifiers. 
 
Learning usually starts with an empty population. Given current input, the set of all classifiers in [P] whose 
conditions match the input is called the match set [M]. If some action is not represented in [M], a covering 
mechanism is applied. Covering creates classifiers that match the current input and specify the not covered 
actions. Given a match set, XCS can estimate the payoff for each possible action forming a prediction array 
P(A). Essentially, P(a) reflects the fitness-weighted average of all reward prediction estimates of the 
classifiers in [M] that advocate classification a. The payoff predictions determine the appropriate 
classification. During learning, XCS chooses actions randomly. During testing, the action amax with the 
highest value P(amax) is chosen. 
 
 
������ 5HLQIRUFHPHQW�DQG�GLVFRYHU\�FRPSRQHQWV�
�
XCS iteratively updates its population of classifiers with respect to the successive problem instances. After 
the classification is selected by the means of the prediction array and applied to the problem, scalar 
feedback is received. In a classification problem, classifier parameters are updated with respect to the 
immediate feedback in the current action set [A], which comprises all classifiers in [M] that advocate the 
chosen classification a. After rule evaluation and possible GA invocation, the next iteration starts.  
 The aforementioned covering mechanism ensures that all actions in a particular problem instance 
are represented by at least one classifier. Each attribute of the new classifier condition is initialized using 
parameter cover-rand that specifies the maximal interval the condition comprises in an attribute. XCS applies 
a GA for rule evolution. A GA is invoked if the average time since the last GA application upon the classifiers 
in [A] exceeds a threshold. The GA selects two parental classifiers using set-size relative tournament 
selection [Butz, 2003]. Two offspring are generated reproducing the parents and applying crossover (uniform 
crossover) and mutation. Parents stay in the population competing with their offspring. In the insertion 
process, subsumption deletion may be applied [Wilson, 1998] to stress generalization. Due to the possible 
strong effects of action-set subsumption, we only apply GA subsumption, which searches for an accurate, 
more general classifier that may subsume the offspring. If such a more general classifier is found, the 
offspring is discarded and the numerosity of the subsumer is increased. The population of classifiers [P] is of 
fixed size N. Excess classifiers are deleted from [P] with probability proportional to an estimate of the size of 
the action sets that the classifiers occur in. If the classifier is sufficiently experienced and its fitness F is 
significantly lower than the average fitness of classifiers in [P], its deletion probability is further increased.  
�
�
������ 5XOHV�VHOHFWLRQ�
�
As in ICU, the same pixel may activate several rules coding for different classes. This behavior can be 
constrained for solving problems as RQH�WR�RQH� FODVVLILFDWLRQ. Two methods (0D[&RQILGHQW and 
6FRUHG&RQILGHQW) were tested, asking the pool to give a unique class for each pixel: 

1. In the first one, only the rules which have a correct self-confidence are considered, in other terms, 
payoff prediction should be greater than a given threshold (fixed in our experiments to the half of the 
maximum value of payoff prediction for the current problem). Then the most frequent class obtained 
from rules which had matched the pixel is returned. 

2. In the second one, all the rules which have matched the pixel are considered. For a class F, a score 
is computed as follows for each rule U: 

 

 ∑
∑= ß

ßßß
)
)3V )*(

 [10] 

 
where 3 à  is the prediction payoff of the rule U and ) à  its fitness. The action of the rule with the best 6 à  
is returned. 

These two methods were experimented for different subsets of CASI data and for a pre-treated expertise set 
as follows: if more than one class was affected to the same pixel, only the dominant class was retained 
according to the percentage of its concentration given by the expert. 
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�� &DVH�VWXGLHV 
 
���� &RQVLGHUDWLRQ�ZLWK�WKH�GDWD�
 
The data available for this study was acquired during a field campaign at the end of September 2002, for the 
European project TIDE (Tidal Inlets Dynamics and Environment, [TIDE, 2001]). During this project, data was 
obtained from satellite or aircraft, at different scales and resolutions, providing a PXOWL�OHYHO� YLHZ of the 
ground [Stow, 2004]. A multi-level remote sensing is a useful technique to monitor large areas: a global view 
of the area can be identified by the satellite image, while the checking of a particular area or a classification 
need aerial imagery. The expertise used in the following supervised classification are based on a costly 
mean, ground truthing (the characterization of all points are made by hand by a human expert), and on 
expert validation provided by the examination of different levels of the data. Due to the existence of such 
different sources, the expert validation of points is not the easiest way but it is relatively safe and relevant. 
Some assumptions were made about the data [Dave, 2002]: 

− the reference data in the learning base are truly representative of the sought classes; 
− the reference data and the expert data are perfectly synchronized by geo-referencing; 
− there is no error in the reference data (incorrect or missing class assignments, change in the 

vegetation boundaries between the time of imaging and the time of field verification, positional 
errors, ...). 

 
Considering the expertise, two issues have to be addressed. (1) The complexity of the analyzed 
environment, particularly the effect of partial volume (data includes SL[HOV of non pure classes), requires that 
the expert selects several classes for one point (PXOWL�ODEHOLQJ). A typical supervised method handles only 
one class attribute. Thus, in the case of multi-labeling, the dominant class is kept or the point is dropped. 
Section 5.1 is a short discussion about the benefits brought by ICU and XCS for this point. (2) Mainly for cost 
reasons, the human expert can only label very few points. The identification of the boundary of each class 
and the construction of convex hulls are mandatory to include more and interior pixels in the expertise. The 
points can represent exactly the class, a part of the class, or sometimes a corner of a different kind of 
vegetation cross a hull supposed to be a whole class. Extra knowledge may be needed to select the correct 
points.  
 
In this paper, a remote sensing image of San Felice (Lagoon of Venice) has been chosen (Fig 5). This image 
contains multispectral data (CASI 15 bands), with 142x99 pixels, 16 bits per pixel and 1.3m terrain resolution 
(Quirin, 2002). The case study considers a typical problem of classification for rural zones, with only five 
requested classes but including a high percentage of mixed pixels. Learning was carried out on 50% of the 
1540 points, and then validation was performed on the whole data. 
 
 
 
 
 
 
 
 á�â ã>ä�å�æ�ç�è ç!é	ç!ê�ë�ç�ì�ê�íCç�î;ï�ç�é	ð�í!ì�ð ì7ñ ò�ó�ô1õ ö÷ôøì!ê á ç!ù â ë�ç�ú
 
���� ,&8�FODVVLILFDWLRQ�
 
The following image and statistics resume our experiments. 
 

 
 
 
 
 
 
 
 
 á;â ãCû�å�òüù ì�ý�ý â è â ç�í â þ"ì�ã�ç

ÿ ì��;ù ç��!å�ò���ê�è���ý â �5ê>þ"ì�ð�é â î
Classification by the expert  SAR2 LISR SPA2 SPA1 LIM1 Qppa 

SAR2 222 0 0 0 5 98% 
LISR 59 149 0 0 21 65% 
SPA2 0 0 382 162 8 69% 
SPA1 0 0 0 28 0 100% 
LIM1 0 0 3 33 468 93% 
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Qsens 79% 100% 99% 13% 93%  
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It should be mentioned that validation points do not concern any water. ICU classifies these pixels in the 
most approximate class (SPA1, pink), but quality of these areas are not relevant (at the south and the right 
border). SPA2 (red) is a pure class of Spartima maritima and SPA1 contains Spartima in a non-dominant 
way. The only point where ICU disagrees with the expertise is the small red spot at the right lower corner 
(instead of pink, see Fig 6). The very narrow resemblance of the spectra of these two classes explains that. 
Classification is quite globally correct (Kappa-index 0.81 - average accuracy 81.1%, see [16] in section 5.1). 
Fig 7 shows the map of overlaps, designed to test overlapping rules. The whiter a pixel, the more rules are 
activated. If no rule can be used, the pixel is shown in red. Even if the map of overlaps is automatically 
made, it shows pixel classes and the degree of mixing. The image below demonstrates that no knowledge 
about water evolved. 
 
 
 
 
 
 
 
 
 
 á;â ã	�!å�
�ì�ï���è
����ç�é�ù ì!ï�ý7ñ�õ ò�� ë�ù ì�ý�ý â è â ë�ì�ð â �5ê�ú
 
 
���� ;&6�FODVVLILFDWLRQ�
 
The following section presents the results obtained by XCS. 
 
 
 
 
 
 
 
 
 á�â ã	�>å�òüù ì�ý�ý â è â ç�í â þ"ì�ã!ç

ÿ ì���ù ç��!å�ò��5ê�è���ý â �5ê>þ"ì�ð�é â î
Classification by the expert  

SAR2 LISR SPA2 SPA1 LIM1 Qppa 
SAR2 266 12 0 0 3 95% 
LISR 11 133 0 0 2 91% 
SPA2 0 0 353 83 1 81% 
SPA1 0 0 27 106 3 78% 
LIM1 4 4 5 34 493 91% 

B
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th
e 

cl
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Qsens 95% 89% 92% 48% 98%  
 
 

 
The classification with XCS shows quite good results. The same remark should be made about the color of 
what one believes being a water class, which actually is not relevant. ICU and XCS find the same classes for 
the same points, including the border of the salt marsh, which contain a lot of mixels. XCS has spent many 
classifiers to separate SPA1 and SPA2 correctly. Nearly one classifier was used to describe each pixel. 
Nevertheless, a better global accuracy was obtained (Kappa-index 0.88 - average accuracy 87.7%). 
 
 
���� &RQFOXVLRQ 
 
The case studies have demonstrated the high capacity of the two evolution-based classifier systems to 
interpret and classify heterogeneous and complex images (e.g. high number of mixels and noisy data). Such 
hyperspectral images provide in general a computational complexity of O(n3), which is quite heavy for a 
deterministic algorithm. It must be noted that the quality of learning is highly related to the quality of the 
classified image used for rule discovery. The discovered classification rules are accurate enough in terms of 
representation for ICU and of generalization for XCS to be mutually exclusive and maximally specific. The 
learning time for the sets of points was relatively short (for a Pentium 2GHz, it lasts 5 minutes for ICU, 15 
minutes for XCS). Classified images by the discovered rules have shown that the evolution-based classifier 
is able to faithfully reproduce the human expertise. 
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�� &RPSDULVRQ�EHWZHHQ�,&8�DQG�;&6 
 
The two algorithms, ICU and XCS are different in many respects. XCS is an online LCS whereas ICU is a bit 
closer to a genetic algorithm. Consequently, the evolutionary paradigm used, the parameters, and the 
computation time are not the same. Moreover, the concepts of SRRO are different and serve different 
purposes. In XCS, the learning takes place in one big pool. In our experiments, classifiers predicting different 
classes are built together. On the contrary, each class (pool) is kept separated in ICU. The idea is to disallow 
takeovers of strong rules describing an HDV\ class possibly deleting weak rules describing a more complex 
class. Unfortunately in this setting, the classifiers cannot use previously learned knowledge to improve the 
current learning process and ICU does not learn a complementary mapping of the environment, as XCS 
does. However, also XCS may be modularized learning classes separately. 
 

In order to test these questions concerning evolution quality, learning time, and parameter 
dependency, ICU and XCS were tested in a YDOLGDWLRQ� SODWIRUP - a program used to run many tests in a 
batch way – providing various statistics and curves discussed below. 
 
 
���� &RQIXVLRQ�PDWULFHV�&0�DQG�'&0 
 
The goal of this section is to identify basic quality measures that will be used to compare the obtained results 
with the two systems. Let 0 �  be a confusion matrix as defined in Table 1. 
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where P �� ,  denotes the number of samples classified by the classifier in the class L, whereas these samples 
are for the expert in the class M. 
 
The following equations present two common quality measures, global accuracy * � Þ�Þ  and the Cohen's Kappa 
index . [Coh60, Lan77]. 
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Generally classification problems are a one-to-one classification type: one pixel should be classified by one 
rule. But the modern conception of ICU or XCS allows solving one-to-Q classification problems: one pixel can 
be classified in several classes thanks to the activation of several classifiers. This possibility can bring much 
of assistance in remote sensing classification problems, for at least two reasons: the presence of PL[HOV in 
the raw data (pixels of several cover types due to the low resolution of sensor detectors) and the fact that 
human experts produce mixed expertise by labeling the same pixel with different classes, labeling each class 
by different proportions. Even if ICU and XCS were designed to solve one-to-Q problems, sections 3.2.4 and 
3.3.3 presents different methods to select one rule by a determinist mean if the action set has several of 
them. The fact, using these methods for the classification of a test set allows filling a confusion matrix (&0). 
But the results obtained from the pool can directly be exploited to take into consideration all expert 
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information, or to simply investigate the contribution of the selection methods in terms of classification 
accuracy. Direct-confusion matrices ('&0) were designed in this spirit. Whereas the sum of each column of 
a confusion matrix must reach 100%, different behaviors can occur for the DCM. Note that DCM constitutes 
a test more difficult to pass for the two methods. All the quality measures (* ')(�( , .) can be applied on 
confusion matrices or on direct-confusion matrices. 
 
 
���� 4XDOLW\�RI�WKH�HYROXWLRQ 
 
XCS comes with a lot of parameters and values acquired during the learning. Fig 9 presents the percentage 
of correct rules obtained at a given generation. A generation is a step of the genetic algorithm. Each step 
represents a WULDO that is a problem presented to the algorithm. These steps are alternatively an exploration or 
exploitation. In an exploration step, action could be chosen more randomly and a discovery component 
[Wilson, 1995] is run in which crossover or mutation can occur. The number of generations (GXCS) is an 
important parameter. If it is too low, the algorithm does not have the time to learn and the quality of the rules 
is too bad. If it is too high, learning time is wasted and, despite the continuous generalization in XCS [Butz, 
2004], overspecializations may occur. The percentage of correct rules grows quite fast but never reaches a 
value larger than 0.98: new rules are added in the population. The graph shows a constant and controlled 
renewal of the population. 
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In XCS a macro-classifier component [Wilson, 1995] is implemented, allowing a new classifier to be added in 
the population only if it does not already exist (otherwise, a numerosity parameter in the existing classifier is 
incremented). Fig 10 presents the size of the population (i.e. the number of unique classifier) depending on 
the number of generations. A lot of specific rules were generated in the beginning of the learning, each one 
coding for one or two pixels, later, more general rules are discovered deleting the specific ones effectively 
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reducing the size of the pool. Depending on the validation method (simple test or k-fold cross-validation), 
between 500 and 750 points were used in the training set. With this point of view, 1000 rules are rather 
excessive to encode the knowledge. In fact, a lot of rules are similar and could have been eliminated by the 
macro-classifier component. Additionally, due to the online learning nature of XCS, the distributed 
representation using 1000 rules may have advantages in flexibility and adaptation if concept classes drift. 
 
 
 

 *,+ -NM9M=/6Q�F�295�+ >@+ 5�+ 8 W�<�>48�H�20F�<,<?BPE424F�247�EG+ 7�-	<G7�8�H�207,I4JLK�243
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In support with Fig 10, Fig 11 shows the specificity of the rules. The more specific a rule is, the less there will 
be MRNHUV in this rule and the less applicable it will be for new pixels. In the case of hyperspectral data, 
specificity is measured with respect to the maximal range for the values of the reflectance of the pixels. First 
of all, the algorithm has no knowledge injecting specific rules for the classification problem. The specificity 
increases. Overspecializations occur. XCS detects and deletes some of them by its indirect continuous 
generalization pressure.. This behavior was expected and was observed in all our experiments. In fact, the 
graph adds some information for choosing a correct number of generations, compared to Fig 9 (400 000 
according to Fig 9, but one million by looking Fig 11). 
 
 
 
 
���� /HDUQLQJ�7LPH�
 
The learning time is an important issue. It is mainly dependent on two parameters. The points in Fig 12 
present the time (in ms) of an XCS-learning (axis Z) according to the size of the population for all the classes 
(axis X) and the number of generations (axis Y). Points are in red or in green depending on the method used 
for the deterministic selection of a rule in the action set (see section 3.3.3). The maximum that was observed 
is 8 millions of milliseconds (2 hours). The size of the set of classifiers and the number of generations can be 
selected and a compromise between quality and time can be found. However, small population sizes result 
in poor solution quality. 
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���� 3DUDPHWHUV�WXQLQJ�
 
It is important that the parameters of genetic evolutionary systems are well-tuned. Fig 13 and Fig 14 was 
used to set up the size of the pool considering global accuracy at the end of a learning run and the learning 
time. Size of the pool is a parameter introduced in XCS before the learning to fix the maximum size of the 
population. A VXUURXQG of the specificity-bump observed in Fig 11 must be accomplished. Between 2000 and 
3000 rules are necessary to obtain a good pool (accuracy approximates 0.9), without having to wait a long 
time. 
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Accuracy measurement is a rustic average of the diagonal of the confusion matrix obtained on the training 
set corresponding to each experiment. A more interesting measure is the Kappa index, applied on the 
confusion matrices (CM) or the direct confusion matrices (DCM) (see section 6.1). Below 1500 rules, the 
pool is quite unstable and has not enough specific classifiers to allow construction of more generic ones. 
This can be explained by the large range of values covered by the data. The index never exceeds 0.6 for the 
DCM, but reaches 1 by looking at the CM. The difference lies in the algorithm selecting the final rule when 
more than one rule for the same class are kept in the action set. Fig 15 proofs the quality of this algorithm. 
 
Fig 16 and Fig 17 show a comparison between ICU and XCS regarding two essential and common 
parameters. ICU is presented in blue, XCS in red. The graph shows the quality of the methods, depending 
on the number of generations and the size of the set of classifiers. Because of the difference between the 
two methods, the set of parameters SICU and SXCS was not the same, but the cover went from the small ones 
to large values from the point of view of the corresponding method. The number of generations has no 
important effect on the final accuracy. It only guarantees that the pool will not be too specific at the end. The 
size of the pool is a relevant parameter only for XCS. Below a given threshold-size, ICU is better, above XCS 
is better. 
The compromise between the time of computation and the global accuracy can be found by selecting the 
method. 
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These two last graphs (Fig 18 and Fig 19) have shown the factor reduction between the size of the 
population fixed at the beginning of each experiment and the final size after the reduction obtained from the 
macro-classifier and the generalization component. The fixed initial size counting the numerosity of each 
classifiers is printed in red, in blue the final size obtained with a 200000 generations learning and in green 
the final size obtained with a 100000 generations learning. The only difference between Fig 18 and Fig 19 
resides in the cover-rand parameter (see section 3.3). In Fig 18, a low cover-rand ( 1=¨& ) implies a high 
specificity and thus diversity in the initial population. On the other hand, In Fig 19, a high cover-rand 
( 610=©& ) operator implies high generality and thus lower diversity in the initial population. Interestingly, the 

final pool size differs dependent on the initial pool size. This behavior can be explained by XCS’s learning 
nature: the larger the maximum population size N, the more diversity can be supported in the population. 
Thus, a very low N prevents diversity and possibly disrupts the accurate learning of all classes. On the other 
hand, a large N allows high diversity and thus generates many new and/or irrelevant rules.  

 
 
���� 52&�FXUYHV 
 
ROC curves are a well-known statistical measure of the classification quality based on the concepts of 
specificity and sensitivity. Specificity is the true negative rate of classification and sensitivity is the true 
positive rate of a classification. Each curve is usually associated with a parameter S. A new pool of rules 

),( 0 S33ª Φ= was generated from an initial pool 03  (corresponding to a reference pool trained with the 
training set) and was applied on the testing set. In our case, S corresponds to a variation coefficient for the 
definition range of the rule ( ]10;0[∈S ). After the application of this coefficient, the condition part 

];[ «¬«¬ 0P of the rule 5 for the attribute L is replaced by ];[ εµεµ +−  with 2

­®­® 0P +=µ and S.µε = . The 

hypothesis behind this study is that the spectra of each sample in the testing set are uniformly distributed 
between the borders of the majority of the condition parts. This hypothesis has been verified on 03  for the 
majority of points of the training and testing set. 
 
Fig 20 and Fig 21 show the ROC graphs for XCS and for ICU. One can see in Fig 20 that the class & ¯  (in 
green) gives many false alarms. With ICU, all the classes are globally correct, except the class & °  (in purple). 
Clearly, an interaction between learning method and data type is observed: if one looks at & ° , for low values 
of S, ICU gives better sensitivity and specificity (less False Negatives or False Positives) than XCS and could 
be useful for diagnoses (better results if the test is targeted for a given class). Conversely, XCS gives better 
sensitivity and specificity for high values of S and could be useful for tracking down, because the accuracy is 
better even if the sensitivity of the test increases. The ROC curves are a useful tool to choose the rule 
discovery method according to the class that we want to classify. 
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���� 9DOLGDWLRQ�VWUDWHJLHV 
 
Many validation strategies were used to give an accurate comparison between the results of ICU and XCS, 
in terms of obtained confusion matrices. Simple hold-one-out strategy, leave-1-out k-fold cross-validation, 
jack-knifing and bootstrapping strategies [Hjorth, 1994, Plutowski, 1994, Shao, 1995] were used. In this 
paper, only cross-validation statistics have been examined. Cross-validation consists to cut the set of points 
in k parts randomly. Then the testing is applied on each part and the learning on the remainder. 

 
Table 4(a) shows the results for ICU. The column 0HDQ is the average of the results for the k parts and the 
standard deviation ((�7\SH) indicates the variation in the quality of each part. Correct accuracy and Kappa 
index were obtained for the confusion matrices. For different values of k, same results were obtained. In 
average for ICU, we obtained an accuracy of 0.81, and this value is quite representative of its quality for 
these sorts of tests. Table 4(b) shows the results for XCS. The results are better than ICU. However, the 
variations of quality between experiments are larger due to the high level of stochastic behavior in the XCS 
method. 
 
Sometimes the rules overlap themselves because the same pixel can activate several rules. Kappa-DCM 
was designed to test this overlap. In fact, bad results might be produced but the algorithm that finally 
chooses the appropriate rule improves the results. 
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Ç Ê Â
  ICU (a) XCS (b) 

Test k Mean E-Type Mean E-Type 
3 0.821 0.007 0.852 0.037 Accuracy 
5 0.794 0.026 0.903 0.026 
3 0.821 0.007 0.852 0.037 Kappa CM 
5 0.794 0.026 0.903 0.026 
3 0.777 0.023 0.417 0.007 Kappa 

DCM 5 0.648 0.017 0.536 0.015 
 
 
 
 
�� &RQFOXVLRQV�DQG�3HUVSHFWLYHV 
 
Until now, the applications of the evolutionary methods in the domain of remote sensing image analysis are 
still very rare. A few recent reports have shown interesting results using genetic programming approaches 
[Ross, 2002; Brumby 2002]. One of the main objectives of this study was to introduce and  provide a better 
understanding of learning classifier systems applied to remote sensing data. 
 
This report has drawn a comparison between two classifier systems, ICU and XCS, applied to voluminous 
remote sensing data. ICU discovers an LI�«� WKHQ classification rule for each class using a fitness function 
based on image classification quality. In general, these rules are robust and can manage several 
disjunctions of constraints. They are able to describe the complexity of the analyzed spectra. XCS learns a 
pool of classification rules for all the classes. These rules were proven to improve the accuracy of the expert 
and are sufficiently generic for applying them on other portions of satellite images. 
 
Compared to XCS, the knowledge learned by ICU is not distributed in a pool, but the representation of the 
rules is more complex and the evaluation of new data is faster. Conversely, XCS can learn a complete 
mapping of the environment: the direct relation between a pixel and its class is learned in the same time as 
the opposite relation (a rule saying that this pixel is QRW in the class). Sometimes the learning of the opposite 
relation is more relevant and compact than for the relation itself. This approach appears very useful to depict 
non-compact classes, very distributed in the search space, as produced sometimes by unsupervised 
learning. This difference in design has affected the results of tests according to a given criterion obtained in 
the section 6. The global accuracy of XCS was better than ICU (in the order of five to seven percents), but 
ICU runs faster (during the training and the exploitation of the pool) and learns a smaller set of rules: only 
one rule is needed for each class while XCS needs 1000 rules to learn 250 to 500 points. In terms of 
knowledge representation, rules in XCS consist of a conjunction of intervals whereas a rule in ICU can be 
more complex consisting of a disjunction of conjunctions of intervals. The selection methods described in the 
paper were experimented on the CASI set, showing slightly better accuracies obtained with the &ORVH&HQWHU 
method for ICU and the 6FRUHG&RQILGHQW method for XCS. 
 
Taking into consideration image complexity and noisy data, the results of evolutionary methods in our 
experiments are very encouraging. Case studies have demonstrated that the obtained rules are able to 
reproduce faithfully the terrain reality. The redundant information or the noisy bands have been successfully 
identified by each pool representation. The representation of the rules has allowed for the modeling of 
constraints adapted to the granularity of spectral reflectance. Hence, these rules-based approaches are of 
great interest when compared to traditional methods of classification. But the potential of evolution-based 
algorithms in remote sensing image classification is just beginning to be explored. Further investigation of 
ICU and XCS learning efficiency are necessary. For instance, research about post-processing the rule base 
represents a great challenge for XCS and more powerful representation of the rules in ICU including spatial 
knowledge and constraints adapted to temporal series could give better results and yield more relevant 
rules. 
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