
Vmap-layout, a Layout Algorithm for Drawing Scientograms
Arnaud Quirin and Oscar Cordón

European Centre for Soft Computing, Edf. Científico Tecnológico, Mieres, Spain
Phone: +34 985456545, FAX: +34 985456699

{arnaud.quirin,oscar.cordon}@softcomputing.es

Introduction
The purpose of this document is to describe a layout al-

gorithm, i.e. an algorithm able to define the location of the
nodes of a tree given by the user. The goal of the algorithm
is to give to the tree an aesthetic layout. The tree is only
described by its structure, i.e. by giving the set of nodes and
links between them. The goal of the algorithm is to asign to
each node a set of coordinates in the 2D-space, in order that
the tree could be drawn. In the following, we will consider
that the two terms tree and graph are synonyms, and in our
graphs the links are directed, a node can only have one par-
ent, there is no cycle, and no node have a specific meaning
(there is no root node for instance).

The nodes have to be located in a aesthetic way in order to
allow a user to understand properly the underlying structure
of the tree. By using the term aesthetic, we would like to
emphasize that the final layout of a tree is always subjective
and defined by some criteria only guided by the final appli-
cation of the layout algorithm. In our case, for the layout of
scientograms (Chen, 1998), we would like to maximise the
filling of the space, to avoid edge crossings, and to avoid the
overlapping of nodes.

In fact, we will consider that the 2D coordinates of a node
is an attribute of this node, and that the goal of this algorithm
is to find the coordinate attributes of all the nodes. To do
so, the algorithm will use a given amount of other attributes,
computed for each node. So the algorithm has the following
structure: first the algorithm takes into input the description
of a tree and computes for each nodes some important at-
tributes. Then, using these previously computed attributes it
computes the coordinate attributes. Finally, the coordinates
are given to the user in order he can generate a graphical out-
put using an external library (this output could be an image,
a web page, or whatever).

We will describe in the second section the global view of
the algorithm. In the third section we will technicaly describe
how to use the algorithm and what are the parameters used by
this algorithm to generate the layout. Finally, in the last sec-
tion, we will give an example of the output of our algorithm
using the Spanish scientogram.

Overview of the algorithm
We start by a bit of terminology. In an ordered tree T , each

node N has a parent P=PARENT(N), except the root node
R=ROOT(T ). CHILDREN(N) is the set of nodes having N
as a parent. ASCENDANT(N) is the set { N, PARENT(N),

PARENT(PARENT(N)), ..., R }. SUBTREE(N) is all the
nodes which have N as one of its ascendant. SIZE(N) is
equal to the number of nodes in SUBTREE(N). For instance,
SIZE(N) is equal to 1 for a node having no child; 2 for a node
having one child; etc. LEVEL(N) is the number of nodes in
ASCENDANT(N). For instance, LEVEL(N) is equal to 1
for the root node; 2 for any of the children of the root node;
etc. DEPTH(N) is the maximum value for LEVEL(M) for
any node M in SUBTREE(N). For instance, DEPTH(N) is
equal to 1 for a node having no child; 2 for a node having
any number of children, but none of them has a child; etc.
By convention, we will also use the notation ROOT(T ) to
define the node having the lowest level in a subtree T .

The algorithm is composed of three main functions. Dur-
ing the first function, the attribute computation, we compute
an amount of attributes assigned to each node. These at-
tributes will be used later to generate the coordinates of each
node. As the graph provided by the user does not contain any
root node (as said before), and as having a root node is re-
quired in order some of these attribtues can be computed, we
have to elect one node as the root node. There is many ways
of electing a centre in a graph. Many of them are described
by Bavelas (1951) and Parlebas (1972). The one used here,
that gives good results, is the deliverer criterion: we take the
sum of the distances between a node and all the others, and
we take as a root the one having the smaller value. Once we
have elected the root node, a number of other attributes can
be computed. We assign to each node N the values corre-
sponding to SIZE(N), LEVEL(N) and DEPTH(N). At the
end of this function, some attributes are assigned to all the
nodes and a root node has been elected.

During the second function, the coordinates computation,
having the graph structure and the attributes described be-
fore, the algorithm fixes the location of each node as a pair
of 2D coordinates. To do so, the global idea is to fill as much
space as possible. It is based on the space-optimized tree
layout algorithm of Nguyen and Huang (2002). The tree is
drawn from the root node to the leaves, and the algorithm
runs in a recursive way: the root node is drawn in the cen-
tre of the map and at each iteration the algorithm draws all
the nodes N having the same level L=LEVEL(N). The al-
gorithm starts by selecting a region of the empty space in
which it can draw the tree (we will call this region initial
polygon in the following), it will assign to the centre of this
polygon the root node, it will cut the initial polygon into sev-
eral slices (as many slices that the root node has children),
and it will assign to each slice one of the children of the root



2 ARNAUD QUIRIN AND OSCAR CORDÓN

Figure 1. An example of the execution of the coordinates compu-
tation function.

node. In this function, the coordinates of the center of the
polygons are assigned to each node. Then, the algorithm
start again, considering one of the slice as a new polygon
and the corresponding node N as the root of a new subtree
S=SUBTREE(N). At the end of the second function, all the
nodes of the tree are assigned to a pair of coordinates in the
2D-space. An example of the execution of this algorithm is
shown in Fig. 1.

For the user, the nodes are represented as a little circle,
with a text label inside. These graphical elements could over-
lap at the end of the second function. During the third func-
tion, the node relocation, we improve the placement of the
overlapping elements (we will use the term node in the fol-
lowing to describe a graphical element which represents a
node). Here, having the coordinates of the nodes generated
previously, the algorithm fixes the final location of each node
to avoid as much as possible that the node overlap. We say
that two nodes overlap when they are too close from each
other, according to a criterion defined by the user, and we
call them problematic nodes. Problematic nodes avoid that
the text labels could be read in a clear way, and avoid in
general a high lisibility of the map. The main idea of this
function is to apply a node relocation process in which the
problematic nodes are moved according to a repulsive force
depending on the surrounding nodes, like if they were con-
nected with springs. To avoid deadlocks in some cases (for
instance, when a node is exactly located between two other
nodes and at an equal distance), the problematic nodes are
also slightly moved in a random direction, until they met a
criterion set up by the user. At the end of the third function,
the final coordinates of the nodes have been computed.

The algorithm, called the vmap-layout algorithm, takes as
an input a tree T and assign to each node of this tree the
coordinates of these nodes. It is defined as follows:

Algorithm VMAP-LAYOUT(T ):

Function ATTRIBUTE-COMPUTATION(T ).
1. Compute the root node using the deliverer criterion:

compute the sum of the distances between a node and all the
others, and take as a root the one having the smaller value.

2. Assign to each node N the values given by SIZE(N),
LEVEL(N) and DEPTH(N).

Function COORDINATES-COMPUTATION(T ).
3. Choose a 2D-space region P in which to draw T .
4. Choose a central point C in P and assign to this point

the root of the tree R=ROOT(T ).
5. If CHILDREN(R) is empty, stop.
6. Cut P in different slices (sub-polygons), giving as many

sub-polygons that the number of children of R. Let Ri be
a child of R, the area of the corresponding sub-polygon Pi
should be proportional to SIZE(Ri).

7. Run in a recursive way COORDINATES-
COMPUTATION(Ri, Pi) for each child Ri of R.

Function NODE-RELOCATION(T ).
8. Apply a KD-Tree technique1 to compute the distance

between all the nodes of T .
9. Select only the problematic nodes, i.e. the nodes close

enough according to a criterion defined by the user.
10. For each node of this set, do:
• Apply a repulsive strength f and move the node along this
force.
• Move it around its final position using a small random dis-
tance in the interval [−α,α].

11. Execute again NODE-RELOCATION(T ) until a given
amount of iterations defined by the user has been reached.

As we can see, the algorithm tries to use all the space
available for the drawing of the tree. Another very impor-
tant point is that this algorithm is natively designed to avoid
crossing of links, because a region of space will be allocated
to only one tree.

Technical details for the use of
the algorithm

This section describes some technical details about how
to use the implementation of the vmap-layout algorithm (we
call it the program in the following). In the first subsection,
we list the parameters used by the program for each of the
three main functions described previously. In the second sub-
section, we describe the format of the NET file loaded by the
program. In the last subsection, we describe how we can use
the output of the program (the list of the coordinates of all

1 This technique computes the distance between a set of objects
in order we can fastly know which objects are the closer to another
one. The library we have used is called the ANN Library (Mount
& Arya, 2006). The advantage of this library is that an approximate
distance computation is used in order to speed up the process, pro-
vided the fact that the exact values of the distance are not important
in our application.



VMAP-LAYOUT, A LAYOUT ALGORITHM FOR DRAWING SCIENTOGRAMS 3

the nodes) and how we can convert it into another format (an
image for instance).

Parameters of the program

Figure 2. The initial polygons with a value of 4 or 8 for the ’INI-
TIAL_SHAPE_SIDES’ parameter.

A

B C D E
A

B C

DE

Figure 3. One the left, the tree to draw. On the right, the initial
polygon and the centre C in black. The polygon is first cut in four
slides, because the node A has four children, then we assign the
corresponding nodes to the corresponding sub-polygons.

During the initialization of the Vmap-Layout algorithm
(step 3 in the algorithm VMAP-LAYOUT), we have to select
the initial polygon, in which the full tree has to be drawn.
This polygon encloses all the layout and its shape will de-
termine the global shape of the drawing. Several options
can be used, but in our case, it seems that using a circle is
better. The definition of this shape is controled by the ’INI-
TIAL_SHAPE_SIDES’ parameter. It indicates how many
sides this shape will contain. Larger this value is, more cir-
cular the shape will be, but slower will run the algorithm.
A value of 15 is well suited, but other could be tried. See
Fig. 2 for more details. Apart from that, the number of sides
has nothing to do with the further execution of the algorithm,
this option has only an aesthetic use. For instance, a high
number could be used to simulate a perfect circle. See Fig. 3
for the detail of the execution of the algorithm.

O
α
α Same areaSame angle

XC X

O

CC

Figure 4. Centers obtained with the ’centerofmass’, the
’centralpoint_angle’ and the ’centralpoint_area’ methods for the
’TYPE_CENTRALPOINT’ parameter.

To choose the central point C of a polygon P (step 4 in
the algorithm VMAP-LAYOUT), we have explored at least

three different methods. The first one, called ’centerofmass’,
takes as C the centre of gravity of P. This centre is de-
fined in any case, but suffers from two problems: this cen-
tre could be outside of the polygon and a polygon with
a lot of segments could attract the centre far away from
the natural centre of the polygon. The second one, called
’centralpoint_angle’, uses the angle to compute the central
point. For a given polygon P, we first select a point on
the border of the polygon, that we call origin O2. We then
draw a line cutting the angle O in two equal parts. Then
we takes as the centre C the middle of this line. The last
one, called ’centralpoint_area’, applies the same procedure,
but by cutting the polygon into two parts having the same
area. See Fig. 4 for more details. The selection of these
methods is done by the ’TYPE_CENTRALPOINT’ parame-
ter. A value of 1 selects the ’centerofmass’ method, a value
of 2 selects the ’centralpoint_angle’ method and a value of
3 selects the ’centralpoint_area’ method. The original pa-
per of Nguyen and Huang (2002) and our tests consider the
’centralpoint_area’ as the best one. The problem is that for
specific shapes of polygon (especially if they have internal
angles greater than π), the area of a sub-polygon is not well
defined. This is why other methods are provided. The default
value for this parameter is fixed to 3 (centralpoint_area).

In the previous paragraph, we said that we place the centre
C in the middle of the line, but other distance could be ex-
plored. The ’CUTPOINT’ parameter select the ratio between
the distance OC and the distance OX (see Fig. 4). With a
small value for this parameter, we get maps where the cen-
ters are close from each other, and with a large value, we get
maps where the centers are more far away from each other.
The default value for this parameter is fixed to 0.5.

C
25%

25%

50%
C

25%25%

50%

Figure 5. The result with the ’crosspolygon_angle’ value (on the
left part) and with the ’crosspolygon_area’ value (on the right part)
for the ’TYPE_CUTSLIDE’ parameter.

The way of cutting a polygon in different slices (step
6 in the algorithm VMAP-LAYOUT) could be achieved
by at least two methods and can be selected with the
’TYPE_CUTSLIDE’ parameter (see Fig. 5. If we use the
’crosspolygon_angle’ method (value equal to 1), the algo-
rithm defines the size of the slides in order that the angle
around the center C are proportional to the size of each tree
Ri. If we use the ’crosspolygon_area’ method (value equal
to 2), the algorithm defines the size of the slides in order that
the area around the center C are proportional to the size of

2 This point could be for instance the centre of the polygon par-
ent (the one used to generate the current polygon), or the left most
point of the polygon.



4 ARNAUD QUIRIN AND OSCAR CORDÓN

each tree Ri. In many maps extracted from the real world,
the second option (with the value equal to 2) does not work
properly because the non-convex shapes of the polygons con-
vert sometimes the problem of finding a polygon’s percentile
using the area into a nearly impossible problem. Therefore,
the default value for this parameter is fixed to 1 (crosspoly-
gon_angle).

O C O C

Figure 6. On the left, the normal behaviour in which all the space
is used to compute the size of each slice. On the right, a modified
behaviour in which a constraint is applied before computing the size
of each slice, allowing us to direct the graph in a given way.

A

B C D E

Tree
(1) Normal behaviour

Measure : the ‘sub_size’ attribute

Node Measure Proportion
B 1/8 12.5%
C 5/8 62.5%
F 3/4 75%
H 1/2 50%

(2) Modified behaviour
Measure : the ‘sub_depth’ attributeF G

H I

Node Measure Proportion
B 2/2 the value ‘START’
C 2/4 0.5 ‘START’ + 0.5 ‘END’
F 3/4 0.25 ‘START’ + 0.75 ‘END’
H 4/4 the value ‘END’

Figure 7. An example of the behaviour obtained with the
’NGUYEN_ANGLE_IDEA’ parameter. On the left, an example
of a tree. On the top, the proportions obtained using the value 1 for
this parameter (given by the ’sub_size’ measure). On the bottom,
the proportions obtained using the value 2 for this parameter (given
by the ’sub_depth’ measure).

The way of cutting the slices described previously needs
a measure defined for each node in order to compute the
proportion in percentage allocated to the corresponding sub-
polygon. The normal behaviour is to take the size of each
node (defined previously as the ’sub_size’ attribute), i.e. the
number of nodes in the subtree of N, to compute a propor-
tional ratio at the level of their parents. Then this ratio is
used as a percentage to compute the size of all the slices of
the corresponding sub-polygons. Note that this measure is
totally independant from the way of cutting these slices, i.e.
given the previously mentioned ratio, the size of a slice can
be obtained using their angle or their area and is selected
using the ’TYPE_CUTSLIDE’ parameter. In fact, there is an
other measure which can be used to compute the ratio. Using
the depth of the trees (defined previously as the ’sub_depth’
attribute), we can modify the proportion allocated to each
slice depending on if they are close or far away from the cen-
ter of the map. This could allow us to constrain the angle of
the links to go only forward when we are close to the center
of the map (see Fig. 6). The normal behaviour can be ob-
tained using the value 1 for the ’NGUYEN_ANGLE_IDEA’
parameter, while the modified behaviour is obtained using

the value 2. The default value for this parameter is fixed to 2.
In the modified behaviour, we can select the proportion ap-
plied to the node located close to the center of the map (with
a small value for the ’sub_depth’ attribute) by fixing the value
of the parameter ’NG_ANGLE_CONSTRAINT_START’.
By default its value is fixed to 0.5. We can also se-
lect the proportion applied to the node located far away
from the center of the map (with a high value for the
’sub_depth’ attribute) by fixing the value of the parameter
’NG_ANGLE_CONSTRAINT_END’. By default its value
is fixed to 0.25. For any other value for the ’sub_depth’
attribute, a linear regression is used to compute the correct
value of the proportion of the slice. In the Fig. 7, we show for
a given tree and four nodes, the values of the ’sub_size’ and
the ’sub_depth’ measure. The first number (before the ’/’)
indicates the current value for the node, the second number
indicated the maximum value for the node, used to compute
the proportion of the corresponding slice.

In the NODE-RELOCATION(T ) function, some parame-
ters can be fixed in order to have a trade off between the run
time and the quality of the node coordinates computation.
For instance, the NODE-RELOCATION(T ) function could
be desactivated using the ’KDTREE_RANDOM_IDEA’ pa-
rameter. If the value of this parameter is fixed to 1, the algo-
rithm jump over this function and directly let the coordinates
of the nodes as the ones defined by the COORDINATES-
COMPUTATION(T ) function. If the value of this parameter
is fixed to 2, the algorithm applies the node relocation func-
tion. The default value of this parameter is fixed to 2.

The KD-Tree technique (in the step 8 of the VMAP-
LAYOUT algorithm) uses a ’KDTREE_EPSILON’ param-
eter to define the appoximation during the computation of
the distance used to select the problematic nodes. A high
value implies a biggest error during the computation of the
distances but also a fastest algorithm. A value of zero (0)
implies an exact computation. As the computation of the dis-
tances is not useful for the final layout of this algorithm, but
is only used to define the set of the problematic nodes, high
values could be used to accelerate the algorithm. The default
value for this parameter is fixed to 0 (exact computation).

The ’KDTREE_RADIUS’ parameter is used to define the
set of problematic nodes (step 9 in the algorithm VMAP-
LAYOUT). The coordinates of any node having a distance
smaller or equal to any other node will be modified by the
algorithm, while the nodes located at a greater distance will
not be moved. As the real distance values are used, this pa-
rameter is dependant to a lot of other parameters related to
the scale of the final layout3, so many care should be taken
while the ’KDTREE_RADIUS’ parameter is modified. The
default value of this parameter is fixed to 0.30.

To each node N of the set defined by the
’KDTREE_RADIUS’ parameter, a force is applied de-
fined as the sum of all the repulsive force generated by
the nodes close to N, multiplied by the value defined

3 These other parameters are the ’INITIAL_POSITION’, the
’INITIAL_DISTANCE’, and the ’CANEVAS_SIZE’ (see the next
section).



VMAP-LAYOUT, A LAYOUT ALGORITHM FOR DRAWING SCIENTOGRAMS 5

0.2
0.17

0.07

Figure 8. An example of the modification of the coordinates of a
node after applying the node relocation function.

by the ’KDTREE_SPRINGSTRENGTH’ parameter (the
repulsive strength f ), and added to a value defined by
the ’KDTREE_RANDOMSTEP’ parameter (defining
the random interval [−α,α], step 10 of the VMAP-
LAYOUT algorithm). See Fig. 8 for more details. The
’KDTREE_SPRINGSTRENGTH’ is used to define the
amount of the quantity of movement applied to the node. A
small value moves the nodes slowly through the iterations
of the algorithm. The default value for this parameter is
fixed to 0.10. The ’KDTREE_RANDOMSTEP’ defines the
quantity of randomness applied to the location of the node
at the end of each iteration. A value of zero (0) disables any
randomness during the movement of the nodes. The default
value for this parameter is fixed to 0.05. As before, these
parameters are closely dependant to the scale of the final
layout and should be manipulated with care.

Another parameter is the ’KDTREE_ITERATION’ pa-
rameter which defines how many iterations the algorithm
have to do (step 11 of the VMAP-LAYOUT algorithm). A
high value for this parameter can be used to establish the
convergence of the coordinates of the nodes, but slow down
the process. The default value for this parameter is fixed to
100.

The input file
To be complete, we give here the structure of the file

loaded by the algorithm, called the .NET file. The graph
given by the user is a set of nodes, each of them having a
text label, and connected by links, each of them labeled by a
floating value (its weights). The input file is a simple text file
(ASCII file) and should follows the following structure:

*vertices <number of nodes>

<node index 1> "<label 1>"

<node index 2> "<label 2>"

...

<node index N> "<label N>"

*matrix

<W(1,1)> ... <W(1,n)>

<W(2,1)> ... <W(2,n)>

...

<W(n,1)> ... <W(n,n)>

where W(i,j) is the weight of the link (i, j). n is equal
to the number of vertices and to the last node index and the
node indices are 1-based.

Another structure is possible using *edges instead of
*matrix :

*vertices <number of nodes>

<node index 1> "<label 1>"

<node index 2> "<label 2>"

...

<node index N> "<label N>"

*edges

<i> <j> <W(i,j)>

...

In this variant, W(i,j) is the weight of the link (i, j) de-
scribed by the index of the nodes <i> and <j>. The second
variant is more useful for sparse matrices, and the first one
for dense matrices.

The output file
The output of the program is another text file describing

the coordinates of the nodes in the DOT language (Gansner
& North, 2000), an ASCII format used by the GraphViz li-
brary4. The final graphical output is obtained after a con-
version from the DOT language to one of the many formats
proposed by the GraphViz library (FIG, GIF, JPEG, PNG,
PS, SVG, VRML, ...).

The program scales the drawing in order that it fits into
a rectangular page and fixes the sizes of the graphical ele-
ments (the nodes, the font of the text labels and the edges).
Some specific parameters related to the graphical output can
be fixed by the user.

The size of the nodes and the size of the text font could be
defined by a constant value or any combination of the node
attributes seen previously. In the current version of the algo-
rithm, the ’level’ attribute of each node is used to define these
values. This is hard-coded in the source code and could not
be changed by the configuration file (’vmap-layout.ini’) but
the program should be recompiled. The size of the nodes is
defined by default to 1/(0.9 ∗ level + 1) units and the size
of the font for the node’s text labels is defined by default to
280/(12 ∗ level + 20) units.

The ’INITIAL_POSITION’ parameter defines the value
of the X and the Y coordinates of the root node into the lay-
out. The default value for this parameter is fixed to 24 units.

The ’CANEVAS_SIZE’ parameter defines the scale of the
layout. All the coordinates are fixed to have a smaller value
than the value of this parameter. The default value for this
parameter is fixed to 15 units.

For some output format (for instance, the PS format), this
parameter has no effect because the GraphViz library applies
its own scale algorithm.

The ’EDGE_SIZE’ parameter defines the width of the
edges. The default value for this parameter is fixed to 0.5.

The final output of the algorithm is a DOT file and has
to be converted into an other format, to be printable. If the

4 GraphViz is an open source network drawing software, freely
provided by AT&T Labs, and is available at: http://www.graphviz.
org/



6 ARNAUD QUIRIN AND OSCAR CORDÓN

output of the algorithm is saved into the ’mapfile.dot’ file,
the following command could be used to obtain a PDF file,
once the GraphViz library has been installed:
/usr/local/bin/neato -Tps2 -o mapfile.ps

mapfile.dot

ps2pdf14 mapfile.ps mapfile.pdf

Examples
The last pages shown the algorithm applied on

the Spanish scientogram. The first graph is the one
obtained by the classical Kamada-Kawai algorithm.
The second graph is the one obtained by the Vmap-
layout algorithm, if all the special feature are disabled
(NGUYEN_ANGLE_IDEA = 1, TYPE_CENTRALPOINT
= 2, KDTREE_RANDOM_IDEA = 1). The third graph
is the one obtained using the modified behaviour for the
proportion of the slides (NGUYEN_ANGLE_IDEA
= 2, TYPE_CENTRALPOINT = 2,
KDTREE_RANDOM_IDEA = 1). Many nodes
close to the center are more spaced, but many
of them still overlap. The fourth graph is the
one obtained using the node relocation function
(NGUYEN_ANGLE_IDEA = 2, TYPE_CENTRALPOINT
= 2, KDTREE_RANDOM_IDEA = 2). Now, all the nodes
are spaced, especially the ones located in the top of the map.
The last graph is the one obtained using the area instead the
angle to compute the centre C (NGUYEN_ANGLE_IDEA
= 2, TYPE_CENTRALPOINT = 3,
KDTREE_RANDOM_IDEA = 2). Some nodes are better
located and the space is better filled.

References
Bavelas, A. (1951). Réseaux de communications au sein de groupes

placés dans des conditions expérimentales de travail, les sci-
ences de la politique aux États- unis. Paris: Armand Colin.

Chen, C. (1998). Bridging the gap: the use of pathfinder networks in
visual navigation. Journal of Visual Languages and Computing,
9, 267-286.

Gansner, E. R., & North, S. C. (2000). An open graph visualization
system and its applications to software engineering. Software —
Practice and Experience, 30(11), 1203–1233.

Mount, D. M., & Arya, S. (2006). (ANN: A Library for Approx-
imate Nearest Neighbor Searching, version 1.1.1, online soft-
ware available on http://www.cs.umd.edu/∼mount/ANN/, re-
leased the 4/8/2006)

Nguyen, Q. V., & Huang, M. L. (2002). A space-optimized tree
visualization. In Proc. of the ieee symposium on information
visualization (infovis 2002) (p. 85-92).

Parlebas, P. (1972). Centralité et compacité d’un graphe. Mathé-
matiques et Sciences Humaines, 39, 5-26.


