IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Learning Classifier Systems: the representation
point of view

Arnaud Quirin, Jerzy Korczak

Abstract— The paper overviews the methods and theoretical
contributions of Learning Classifier Systems (LCS). The funda-
mental principles regarding the rule representation are described
and the common representation techniques are detailed (binary,
real, fuzzy and functional). A taxonomy of recent LCS is proposed
using the rule representation concept as the classification crite-
rion. The rule representations can be compared using pre-defined
criteria such as accuracy, representation of the knowledge and
comprehensibility of the classifiers. Three systems corresponding
to the current trends are detailed and analyzed, namely XCS,
LFCS and XCSL.

Index Terms— Classifier systems, reinforcement learning algo-
rithms, rule representation, data mining.

I. INTRODUCTION

Knowledge discovery in large databases traditionally uses
data mining techniques that, through an iterative process of
extraction, are able to generalize data and create knowledge
bases. A variety of approaches and algorithms have been
applied to discover rules and create knowledge bases. More
recently, beside of inductive systems [50], [49], [20], bio-
inspired algorithms have been developed, notably based on
neural networks [26], [5], fuzzy systems [78], [45], [44], [16],
[52] and evolutionary algorithms [22], [40], [88], [35], [54],
[18], [571, [48], [38], [58].

The goal of the paper is to make a synthesis of knowledge
representation methods in Learning Classifiers Systems (LCS)
and point out the main streams of research in this domain.
The problem of designing a good representation is not trivial.
Several orthogonal criteria have to be considered, manly
comprehensibility and quality of the rules. For instance, a
simple rule is easy to understand for a human expert, and
easy to use in a new context, but the risk is that it may have a
poor quality. LCS is a particular class of systems which uses
reinforcement in conjunction with a genetic algorithm (GA)
to evolve a set of rules called a classifier set. When expertise
is not easily available and the models are not well-known,
reinforcement learning is an interesting approach. In the LCS a
reinforcement mechanism is based on supervised learning that
interacts with an external environment [68], [7]. The system
communicates with the environment by exchanging messages
and improves itself by perceiving penalties or rewards resulted
from its behavior. The messages allow the system to interpret
the environment through its detectors or sensors (with input
messages) and to interact with this environment using its
effectors (with output messages). The processing of LCS is

LSIIT/CNRS Laboratory, Boulevard Sébastien Brant, 67400 Illkirch,
France. {quirin,jjk} @lsiit.u-strasbg.fr

performed by classifiers that are rules used to model the
environment by predicting the output messages from the input
messages.

To evaluate a given rule representation a certain number of
criteria can be proposed that in general refer either to extracted
classifiers or to the learning algorithm. Most of them relate to
the following features:

o The generalization accuracy is the accuracy of an algo-
rithm for the classification of non-learned data. This can
be computed as a ratio between the number of correct
classified samples and the total number of samples.

o The comprehensibility is the fact that a classifier is under-
standable by a human expert. This can be approximated
by looking at the syntactic complexity of the classifier, the
size of the rules, the number of attributes or relationships
in the rules, ...

o The robustness in regards to the data is the ability to
deal with noisy, incomplete, false or missing data. This
can be evaluated by scoring the algorithm on real-world
problems.

o The algorithmic independence is the ability for an algo-
rithm to produce a rule base that can be optimized by
another algorithm.

e The representation of the knowledge. Depending on the
representation of its internal knowledge, an algorithm can
reduce the data complexity.

o The time of the learning.

o The stability of learned knowledge through parametriza-
tion.

o The determinism of the algorithms. A deterministic algo-
rithm learns the same rule set at each run.

o The scalability with huge data. This can be computed
using the complexity of the algorithm in terms of several
parameters, specific to the algorithm or to the data (e.g.,
the number of learning samples).

e The quantity of external expertise needed. Interactive
systems need more external expertise than batch systems.
The more an algorithm needs external expertise, the more
it will be difficult to understand.

To introduce the LCS, a comprehensive taxonomy of the
LCS is proposed (Fig. 1). The taxonomy is built using two
properties: the strategy of classifier usage and the representa-
tion type. The strategy of classifier usage is illustrated from
top to bottom. Single-step and multi-step problems are well
known problems in the field of data mining. From the left to
the right, the classifier representations used in LCS is detailed
from the earliest solutions(known as binary, e.g. CS-1 in 1978)

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

to the most modern ones (known as functional, e.g. XCSL in
1999). It can be shown that a functional classifier is more
comprehensive than a binary one.

LCS

Single-step

‘ Binary ‘

]

Integer / Nominal

Neural

‘ ‘ Functional ‘

CS-1 (Holland, 1978)| | Dyna-Q (Sutton, 1992) | KXCS-R (Wilson, 2000) | | ARP (Barto, 1985) GPCS
ZCS (Wilson, 1994) | | SRS/E (Witkowski, 1997)| | XCSF (Wilson, 2001) || NCS (Bull, 2001) | |(Ahluwalia, 1999)
ICUX (Quirin, 2005)

‘ Real / Fuzzy H

XCS (Wilson, 1995;

1]

‘ ‘ Functional ‘

NCS Xcsm,
(Bull, 2001) | [XCSL (Lanzi, 1999)

‘ Binary ‘ Integer / Nominal ‘ Real / Fuzzy H Neural

CS-1 (Holland, 1978)
ZCS (Wilson, 1994)
XCS (Wilson, 1995,

Dyna-Q (Sutton, 1992)
SRS/E (Witkowski, 1997)

LFCS (Valenzuela-R., 1998)
XCS-R (Wilson, 2000)
GFRBS (Cordon, 2001)

YACS (Gérard, 2000)
ACS2 (Butz, 2002)
Ishikawa, 2000
Takadama, 2000
IMAXCS (Hercog, 2001)|

Anticipatory

Multi-agent

Fig. 1. A taxonomy of LCS with some examples.

The paper is structured as follows. Section II introduces the
key concepts for understanding the fundamental principles of
classifier systems. Section III and section IV details recent ar-
chitectures. In section V some examples of LCS are presented,
in particular the XCS system, fuzzy learning systems and S-
classifier systems are described. Finally, in the last section, the
current improvements and comments on future research in the
domain are discussed.

II. CLASSIFIER SYSTEMS : FUNDAMENTALS
A. Learning classifier systems

LCS are founded on symbolic learning. A classifier, in a
similar manner to other reinforcement learning techniques, has
to associate each situation with the best possible action. Each
situation (m,a), where m is an environmental message (or
stimulus) and a the corresponding action (its behavior), can
be modeled as a state. The number of states for a complex
problem can be relatively large: if each state is described by
n discrete attributes, there are 2™ possible states in the case
of binary attributes. With a traditional representation such as
decision rules, solving a problem with a large number of states
requires quite a large number of rules, each one connecting a
state with a given action. The algorithmic complexity of such
a situation could quickly explode. The concern of CS is that
they can directly associate the action with the value of the
attributes rather than the state which the system is in.

The difference between LCS and traditional learning tech-
niques, such as inductive systems or neural networks, lies in
their collaborative learning ability. A solution of a problem is
represented by a sequence of related classifiers. The informa-
tion is transmitted from one classifier to another as messages to
interpret. According to Holland [31], the characteristics which
distinguish the LCS from the CS concern the classifier activa-
tion and the knowledge base. The activation of each classifier
relies on parameters that are modified in time, so as to mimick
the experience acquisition. This experience is brought about by
the environment: the classifiers obtain a feedback (or reward),

i.e. a penalisation or a gratification according to their behavior
from the environment. Furthermore, the classifiers are stored
in a knowledge base which is modified during the steps of the
algorithm: new classifiers are generated or suppressed, and the
<condition> and the <action> parts (see the next section) of
existing classifiers are recombinated. This generation of new
classifiers is performed by a genetic algorithm (GA).

Let us describe the strategy of classifier usage. According
to the number of runs k, the learning can be defined as single-
step (k = 1) or multi-step (k > 1).

In a single-step learning run, the goal is to discover a
function in a classification or a regression problem. The
problem is solved in only one step by applying of a classifier
which returns the classification decision or the function value.
During the learning, the classifier activation is independent
of the system’s previous states and the classifier’s reward is
perceived until all the samples have been passed into the
system. Problems of classifications are typically single-step
if these samples are independent.

In a multi-step learning run, a message generated by the
environment is passed from one classifier to another by
activating the most suitable classifier each time. This forms an
activation chain that is dynamic in complex environment and
follows the evolution of the environment in time. In learning,
the reward can be perceived at any step and the content of the
activation messages depend on the previous steps.

Some data mining problems (such as classification) can
better be considered as single-step learning, although it may be
possible to view their environment as multi-step. In this case,
the objective is to discover a sequence of relevant classifiers
corresponding to the various data filters. Unfortunately, such
systems are currently not solvable algorithmically.

Environment’s objects encoding

Name | Food | Wall | Empty cell
Object | F| G| 0] 0© -
Encoding | 110 [111 [010 [01T | 000
Typical classifier (meaning and binary encoding)):
F.. F () Q O: go up-left
O*. | 110 000(...) 000011 010 01
Q..
Local Generalization (meaning and binary encoding):
view
F/G : go up-left

Vig s (L. .) w2 O

Fig. 2. Labyrinth problem.

For instance, the environment presented in Fig. 2 illustrates
an one-sight robot ("*" symbol) immersed in a labyrinth. A
view of a labyrinth is shown in the left part, the encoding table
of the symbols is shown in the upper right part, a typical
classifier is shown in the middle right part and a learned
generic classifier used to solve the labyrinth is shown in the
lower right part. The goal is to find food ("F" or "G" symbols)
by avoiding the walls ("O" or "Q" symbols). Symbols "."
are the empty cells. The robot owns a classifier base which
indicates the direction of the next move according to the
contents of its local environment. Classifiers are contained in
a classifier base. They are encoded by considering the cells in
a clockwise manner, starting from the top-left cell, using the
table on the right hand side of figure 2. A typical classifier is

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

shown under the table. An additional symbol is introduced (#),
coding for a « 0 » or a « 1 ». The “#” symbol is a wildcard
character used to activate any symbols of A4 = {0, 1}. It is
also called the « don’t care symbol » or the « joker » [79].
The goal of the system is to propose more generic classifiers
that it can find, for instance by encoding the food by « 11# »
rather than by « 110 » or « 111 ».

The very simple process of an environment which produces
a message activating the conditions of a given rule, then the
emission of the corresponding action in this same environment
strongly evokes the general principle of an inference system
[37]. Post has shown that such systems (called Post Production
System) are computable in a polynomial time [56]. These rules
are in the form If ... then ... else in high level programming
languages and are used by knowledge-based systems [47].
They benefit from the fact that they are a formal model of a
universal program. In fact these high level programming rules
can have a high representation ability.

The knowledge base, learned and managed by the system
as a classifier population is not a simple list of classifiers.
In the Holland definition, a classifier is a rule encoding a
low level knowledge of the system. It includes one or more
specific conditions (the <condition> part) and one action (the
<action> part). A classifier, activated by the input message, is
determined by the evaluation (or matching) of the <condition>
part, and the <action> part contains the message transmitted
by the system when the <condition> part is satisfied. In
general, two approaches have been identified:

o The Pittsburgh approach [19] in which the population is a
set of rules (rule-sets). Thus, each individual is a distinct
production system and at each generation, the best rule-
set is selected and evolved.

o The Michigan approach [31] is the traditional approach,
in which each individual is a distinct rule. Rules are
evaluated by the GA and the populations are evolved by
crossing the rules between them. This approach is not
only the most traditional, and most documented in the
literature, but is also that which gives the best results in
general [31], [7].

There is also a third approach, less current, in which the
rules are learned in an iterative way [76]. They are encoded
into the chromosomes and, for each cycle of the GA, a new
rule is adapted and then added to the rule base. In design, the
adopted approach must be carefully selected. In both basic
approaches, difficulties may appear [13]: in Michigan-like
systems, the equilibrium between cooperation and individual
competition is delicate, but the solution representation using
independent individuals is effective for many problems. In
Pittsburgh-like systems, the individuals are more complex en-
tities and are more difficult to evolve by the genetic operators.

Formally, a classifier has the following form:

1)

where ¢; (¢ < nandn > 1) is one of the binary values of the
classifier <condition> part and a is the <action> part. Each of
the members c; of the <condition> part is a string with a fixed

<condition> : <action> =C1,C2,...,Ciy.--,Cn Q

size k defined in a given alphabet .A. Historically, Holland used
A = {0,1,#} [29]. As explained before, the “#” symbol
is a joker character used to activate any symbols of {0,1}.
When a binary message is matched to the <condition> part
of a classifier, each bit is compared one by one. If all the
bits are identical, or if the message differs where the “#”
symbols appear in the <condition> part, the <action> part
of the classifier is used to select the next action to emit in
the environment. This binary representation is quite simple
and also useful for the LCS theory, notably for convergence
proofs and analysis of population development such as the
schema theorem [22].

The goal of a classifier system is to entirely model the
function (or mapping) X x A, where X is the input message
space and A the corresponding actions which maximize the
received reward obtained from the environment.

Let us now introduce a few terms from the classifier theory.
The specificity of a classifier is the number of instantiated
values (i.e. different from the “#” symbol) in a <condition>
part. No joker implies a maximal specificity and only jokers
means that the specificity is null. When one classifier has a
lower specificity than the other, and the instantiated values are
both identical, the first classifier subsumes the second one.
In the following example, the rule base BR1 is equivalent to
both of the rule bases BR2 and BR3, but not to BR4. In this
example, one can say that the classifier in BR4 subsumes the
one in BR2.

001010 : 11100
BR1 101010 : 11100

001110 : 11100
BR2 #01010, 001110 : 11100
BR3 001#10, 101010 : 11100
BR4 #01#10 : 11100

It is important that the specificity is correctly managed by
the genetic operators, to control the generalization level of the
classifiers. This can be done, for instance, by selecting the
appropriate production probabilities for each symbol in A.

In binary representations, the “#” symbol corresponds to
a “1” or to a “0”. In real representations, the “#” symbol
corresponds to the widest interval possible. Notice that using
the intervals directly is more suitable and easier for the
mutation and crossover operators. In fuzzy representations,
the “#” symbol is replaced by a function equal to frue on
the whole definition domain. According to Schaeffer [66], the
“#” symbol is capable of improving the performance of the
rules. It can reduce the number of classifiers in the system and
increase the number of solutions covered by the classifiers.
So, specificity is related to the comprehensibility criterion: if
a classifier contains more joker symbols, then this classifier is
easier to simplify, to interpret and to understand. Moreover, the
learning performance of the system is improved because the
Jjoker allows the concepts of general principles and exceptions
[23]. Using jokers, one can also introduce the concept of
hierarchization of classifiers. In [65] Riolo has shown the
influence of hierarchization during the learning through the
concept of niches. A niche is a set of environment states,
activated by the same classifier set, sharing all the rewards.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

If the solutions space is not known, the initial rules cannot
be introduced by the programmer or by an expert in the field.
Therefore, during the evolution, the rules selection operators
(roulette wheel or tournament) bring a capital contribution.
During the learning, the hypothesis competitiveness introduced
by the <action> part comes directly from their past accuracy
and their specificity [64].

In addition to the binary representation, those that are
most used now are continuous representations, functional
expressions (written in LISP, [42]), register conditions and
auto-reinjected messages in the system!. In continuous rep-
resentations, each condition is a sequence of real values or
real intervals. In register conditions, the classifier <condi-
tion><register> : <action><register> is activated when the
internal registers match <register>.

An interesting model has been proposed by Wilson [83]. In
his model, the input message is a vector of real values and
the alphabet A used in the <condition> part is replaced by
intervals of real values. The classifier is then activated when
all the real values of the message correspond to each real
interval of the <condition> part. As any information can be
encoded by a real value, this representation is much more
powerful than the binary one and can be used in almost all
applications [74], [60]. But this representation suffers from
one drawback: the too-strict matching method of Wilson can
prematurely eject some almost-good classifiers. For instance,
the message “0.15” activates the classifier “[0.15;0.19]”, but
not the message “0.14” in a way in which the system cannot
improve the classifier (for instance, by enlarging the interval).
In this case, the fuzzy representation can be applied to solve
this major drawback [43], and has only recently been explored.
For instance in [58], the result of the matching between a
classifier and a message (actually true or false) is replaced
by a score computed using a mathematical distance between
the message and the intervals of the <condition> part. The
message is viewed as a point in an N-dimensional space
(N being the size of the message), the intervals are viewed
as hyper-rectangles and the score corresponds to euclidian
distance. This representation can solve the drawback exposed
before but is computationally more complex to evolve.

The <condition> part allows the encoding of any elemen-
tary information, such as a color, a form, a spectrum or any
other constant. This part is used during the activation of the
system by the input messages. As previously, the classifier is
activated when their conditions are satisfied. The c¢; values are
considered as conjunctions of the <condition> part. There are
no disjunctions in the traditional classifier model.

The <action> part is the output message coding an action
to be carried out when the classifier is activated. Generally,
this action switches the system to the next state, for instance,
the modification of the robot direction or the food ingestion.
In text mining, it might be the attribution of a semantic class
to a sentence. In image mining, it might be the attribution of
a class to a pixel.

IThese systems look like the initial propositions of Holland and his initial
definition, but were given up because of their complexity

III. ARCHITECTURE OF A CLASSIFIER SYSTEM

An architecture of a classifier system describes its struc-
ture and the relationships between its components. The main
components of LCS are the following:

e The environment. This component describes the problem
to solve, i.e. an area in the search space in which the
classifiers are evolved. It evolves and changes in an
autonomous way but interacts with the LCS using a
message system.

e The detectors (or an input interface). These translate the
current state and the current events from the environment
into input messages.

o The effectors (or an output interface). These allows
the LCS to interact with the environment by producing
some actions, delivered by the output messages from the
system.

e Several message lists of which the interest and use are
related to the characteristics of each LCS. Usually, the
presence of the three following architectures is invariant:

— A classifier base [P]; (or Population Set). This is
the classifier set, randomly initialized before the first
generation, and represents the system knowledge
at the instant ¢. More formally, in the case of a
Markovian environment, the transition from [P]; to
[P]t+1 is homogeneous?,

— A message list [M]; (or Match Set). This contains
all the active messages, i.e. all the messages which
match the current input of the system,

— An action list [A]; (or Action Ser). This contains the
<action> parts (see the section ??) of the active mes-
sages which will be used by the LCS to determine
the message to send from the effectors.

The system uses the evolutionary paradigm to create indi-
viduals and to adapt their behavior to the environment, which
generally changes itself during the learning. A GA is used
in the case of a binary representation and an evolutionary
algorithm (EA) in the case of a real or a fuzzy representation.
The initialization, the mutation and the crossover operators are
adapted for each case. Generally, new parameters are added
to constrain the search space for each operator. For instance,
to create new classifiers with the initialization operator in
the binary case, the user needs to set two parameters: the
apparition probability of a “0”, compared to a “1”; and the
apparition probability of a “#”, compared to another symbol.

Figure 3 shows an illustration of the various components of
the classifier system proposed by Wilson [79].

The following parts compose the system:

« an environment which represents the problem to solve,
« the knowledge base (Population set),

o the activated classifier list (Match set),

o the selected classifier list (Action set).

The selection of classifiers and manipulation in the various
lists is performed by two algorithms:

2The pool at the instant ¢ + 1 is entirely given in a probabilistic way by
the pool at the instant ¢.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

‘ 0011 Environment 01 ‘
g Output
H message
[Detectors | a [Effectors |
Input ;:l
— ‘ ion algorithm for the rules : =
P | fitness, specificity, strength, ... E)
it =3
#011:01 43 Genetic Algorithm : 2
118400 32 | Exploitation and discovery of new Q
HOREAT 14 ifi 3
001#:01 27 Watch Sot (V]
#0#1:11 18 atch Set [M], -
#0110 24— Action Set [A]
#011:01 43 . .
#0ME11 14 Action selection | #011:01 43
001#:01 27 001#:01 27
#0#1:11 18

Fig. 3. Simplified model of a classifier system. Source: Wilson [79].

o an algorithm for the credit distribution giving good re-
wards at effective classifiers and penalisation at the others
(the credit repartition mechanism),

o a GA used to evolve the classifier base (the classifier
discovery mechanism).

One of the commonly used algorithms in the credit reparti-
tion mechanism is the Bucket Brigade Algorithm described
by Holland in [30]. The principle of the algorithm is the
following: the effective classifiers are rewarded while the
others are eliminated.

IV. INTERACTIONS BETWEEN COMPONENTS

The classifiers compete to control the system and to opti-
mize the reaction of the environment. This reaction is given
as a reward or a penalisation based on the performance or the
failure of the current action with respect to the environment.
From the point of view of the system, this reward cumulates
with the credit (strength) of the classifiers having generated
the action and determines, during the learning, the strength
of each classifier in the competition. In fact, individuals are
created during the algorithm initialization and only the strength
evolution of each one helps to differentiate themselves. In this
way, the learning will never be efficient until an evolutionary
process is used to renew the population. This is carried out by
a genetic algorithm, acting on the rule base [P], allowing to
create new classifiers by crossover or mutation.

To evaluate the assimilated knowledge by the system, the
LCS uses an evaluation function specific to the problem to
solve. Usually this function uses the environment answer in
a straightforward way. The classifiers accuracy is computed
according to the degree of its contribution to the resolution of
the problem.

R. Richards [64] details two modes in which a LCS can
operate at the instant ¢: the Learning Mode and the Application
Mode. When the system is in its learning mode, detectors
perceive information from the environment, determine the
relevant action then carry out actions in the environment. This
process is called the Application Mode. The process is shown
in figure 4.

from the environment

_.‘ P P by the ofa
v

‘ Encoding into the system alphabet, used to encode the

v
‘ Matching with the <condition> part of the pool [P],

Transferring of the active classifiers from the pool [P], to the pool

e ‘

2

‘ Creation of the pool [A]; using a selection method

‘ Creation of a message M, using the winning action

Emission of the message M, using the effectors that change the
environment

Sending of a message to the bucket brigade algorithm to pay the
rofits or the charges of the classifiers

Fig. 4. Application Mode : interactions with the environment.

)] Reward
Environment ‘

Input Output
message message

[erecos |

[otesas |

Classifier discovery mechanism

Triggered Cover Detector Operator :

IF the list [M] is empty or has a too low
[A], : action list of strength

selected classifiers

THEN create a new classifier, so that this
classifier is activated by [¢)

[#] : message list from

the
l Bid
N [list of classifiers
activated by a message of [¢] |

Original strength S,
Classifier base [P]

Triggered Genetic Algorithm Operator :

New classifier

Bucket

Activation of the classifier
conditions by the
environment messages

Credit repartition
Modified strength S,

I the number of selections in the Action Set A1
is beyond a given threshold.

THEN start a new genetic epoch

Selection of parents (for the
crossover, the mutation and
the operators)

New classifiers ‘

:

Genetic Algorithm

Classifier discovery mechanism

Fig. 5. Detailed messages interactions in a LCS. The mechanisms dedicated
to the classifiers discovery are shown in black boxes. Source: Richards [64].

Initialization of the classifier system (t=0)
¥

‘ Generation of the initial population ([P],)

Mode)
¥

Evaluation of the population [P} (fitness, TGAO)
¥

Classifier selection for the population [P];.,

¥

‘ Crossover and offsprings addition to [P].

¥
Mutation of the population [P];,;

¥
One iteration of the algorithm main loop (see the Application "_

¥
ifiers of the
.1 then t = t+1

of the worst
best from the population

ion [P], by the

IF false, loop again
IF true, exit]

‘ Test Termination_criterion(t)

Fig. 6. Learning Mode : main algorithm.

The base of classifiers can be viewed as a space to test hy-
pothesis. Here, a hypothesis is a classifier that is selected when
appropriate for the current state of the system. This relevance,
known as the classifier competitiveness, is determined by the
value of the classifier strength during previous generations as

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

well as its specificity. The genetic algorithm has to exchange
the information acquired by the classifiers. They are selected
using an evaluation function and a special operator, known as
a Triggered Genetic Algorithm Operator (TGAO). TGAO is
used to control the frequency of the crossover and the mutation
operators.

Figure 5 shows the main interactions between components
and the message flow in the system. The messages are emitted
by the environment (in the top of the figure) towards the
system, which stores them in a classifier base ([P];). Then, the
TGAO operator is applied to the base and new classifiers are
created using the genetic algorithm during the Learning Mode
(Fig. 6). Now the system has to choose an action to emit to
the environment. To do this, the Bucket Brigade Algorithm
elects the winning action, which pays a bid to non-activated
classifiers, as described in the previous section.

The Covering Operator

The Triggered Cover Detector Operator (TCDO) defines
when a new classifier needs to be generated. This could arise
if no classifier is activated by the environmental stimulus or
when the Population Set does not pass some criteria (for
instance, an average strength threshold). For instance, if the
list [M] is empty, i.e. when the message from the detectors
m = {messeny 0,...,MeSSeny N} activates no classifier in
[P], the algorithm is blocked. In such a case, the population
cannot be improved: the LCS might be immobilized in a
local minimum and, at best, the final solution might not be
relevant. Wilson [79] quotes several detection strategies for
such situations and proposes methods for retrieving a complete
list [M]. The corresponding operators are known as Covering
Operators. These operators are triggered when the list is empty
or when the total strength Sjps, (sum of all the classifier
strengths S in M at the instant ?) is below the limit ¢.S(pjx
where ¢ is a parameter and Sypj» is the average strength of
the population [P]. In such a situation, the Covering Operator
has to generate a new classifier C. This is performed, in the
case of a binary representation, in the following way:

o the <condition> part is built using exactly the message

m and by adding a fixed rate 64 of joker symbols (#),

« the <action> part is randomly chosen,

« the strength of C' is equal to the average strength of the
pool [P].

In a real representation, the <condition> is built using
random intervals. Small and large intervals correspond respec-
tively to instanced values and joker symbols in the binary
case. In more elaborated representations, such as the fuzzy or
the functional, the <condition> part is always built following
these three requirements:

« The message m has to activate the classifier.

o The expression is coherent in terms of the target repre-

sentation.

o The generated expressions need to be diversified, so they
are generated as randomly as possible. Additional jokers
are used to fulfil the first and the last requirements.

Then, C' is introduced into [P] by replacing an existing
classifier, chosen using a eugenic selection operator defined by

the genetic algorithm. A new pool [M];1; is created and the
algorithm continues in the usual way. For example, according
to Wilson, ¢ = 0.5 and 64 = 1/3 seem to be good parameters
to solve the labyrinth problem. In fact, this operator is a
slightly too strong, since it directs the LCS towards a learning-
by-heart and does not exploit the already learned knowledge,
as does the genetic algorithm.

Nevertheless, messages inducing empty pools are consid-
ered as unavoidable for the majority of the problems, and
the Covering Operator can be viewed as the last chance.
Moreover, it allows the testing of new hypotheses, based on
original messages, rather than to act in a completely random
way.

V. RESEARCH IN THE LCS FIELD

In this section, a few representative classifiers of the current
trends will be detailed (see the taxonomy, Fig. 1), notably the
XCS classifier (binary), the LFCS classifiers (fuzzy) and the
S-classifiers (functional).

A. The Wilson classifier (XCS)

Usually, the strength parameter is used both as a prediction
of the future perceived reward and as the main parameter of the
evaluation function. But as Wilson [80] has noticed, in some
cases, this prediction value is not correct when used in the
evaluation function. To solve this problem, the XCS algorithm
[80] extends the classifier system algorithms by adding several
parameters into each rule, notably the reward prediction, the
error of prediction, and the measure of the precision of the
prediction used in the genetic algorithm. Another extension
of Wilson relates to the macro-classifiers. But this concept
does not refer to a different classifier representation; it is
an algorithmic technique to reduce the complexity of the
computing of the classifiers activated by the input messages.
Table I shows the essential parameters for XCS and their
recommended values, according to Wilson.

In his next paper [81], Wilson introduces two new improve-
ments, appreciably increasing the generalization capability and
the accuracy of the system:

1) the set on which the genetic operators act,

2) and the subsumption replacement.

Summing up, the XCS rules have good generalisation and
robustness abilities, but they are not very comprehensive. In
general, the research reports show good results with XCS
compared to other systems [2], [46], [84]. In spite of the fact
that XCS was first designed for multi-step problems, we have
also obtained good results on single-step problems [61]. It
should be noted that this model has been used in many projects
(classification, object recognition, robot environment, ...), and
is a base of many theoretical and optimization studies [81],
[11], [12].

However, the ternary representation of XCS ({0, 1#}) is
not convenient when dealing with real-world problem. Even
if this representation is still in use, new representations are
now deeply explored. For instance, investigations have been
done using Centre-Spread Representations (CSR) [82], Lower-
Upper bound Representations (LUR) [86] and Unordered

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Meaning Ideal value
Number of classifiers in the population 50
Learning rate for the actualization of the
fitness the error, the prediction and

the size estimation of the Action Set 0.2
A classifier can be suppressed below this
percentage of the average fitness 0.1

Triggered Genetic Algorithm Operator (TGAO) :
Average number of classifiers selection in the
Action Set before triggering the GA 5
Covering Detector Operator (CDO) :

Percentage of the average strength in the Match Set

to trigger the Covering Operator 0.1
The classifier precision is fixed to 1 if the

error is beyond this threshold 10
Minimal lifetime of a classifier 20
Crossover probability 0.8

Mutation probability 0.15
Error reduction when a new classifier

is generated by the GA 0.25
Fitness reduction when a new classifier

is generated by the GA 0.1
Initial prediction of a classifier 10.0
Initial error of a classifier 0.0
Initial fitness of a classifier 0.01

TABLE I
THE MAIN PARAMETERS USED IN A XCS-LIKE CLASSIFIER. SOURCE:
WILSON [79].

Bound Representations (UBR) [67], where half-open inter-
vals [p;;q;) encode a constraint corresponding to the i-th
input variable. In the case of centre-spread, the intervals are
expressed by a center and a radius; in the case of lower-
upper bound, the limits are directly encoded but p; < g;
for all 7 and in the case of unordered bound, no restriction
is made on the order of the limits. To map a genotype to
a phenotype, CSR needs a truncation that is undesirable in
some cases [67]. UBR addresses this issue and has shown
good performance on very specific problems (for instance,
the checkerboard problem), but the alternance of genes that
represent min and max values decreases the efficiency of
the crossover operator. In the Min Percentage Representation
(MPR), the intervals are described by a minimum bound
and a value corresponding to the proportion of the quantity
q; —p; compared to the maximal interval range [17]. However,
even if this representation does not suffer from the truncation
bias or the semantic alternance of genes, theses systems are
restricted to very specific problems like real multiplexer or
checkerboard problems because of their limited phenotypic
expression (hyper-rectangles in the space of data)[67].

B. Classifiers and fuzzy logic

To overcome this issue, more elaborate phenotypic ex-
pressions for the classifiers have been explored, and among
them, the fuzzy logic. These systems, called Learning Fuzzy
Classifier System (LFCS) [62], are able to deal with classifiers
encoding continuous variables. A linguistic interpretation of
these classifiers can also be proposed. This paradigm is
known in the literature under the generic name of Genetic
Fuzzy System (GFS), where the most sophisticated systems
are probably the Genetic Fuzzy Rule-Based Systems (GFRBS)

[15], [72], [55]. The integration of fuzzy logic allows the use
of certainty factors in natural language expressions such as
heat, cold, reliable, indisputable, not very sure, etc.

Concerning the representation of knowledge expressed by
the classifiers, this can be divided into rule base and database
representations. The rule base contains all the fuzzy rules.
Using genetic algorithms to learn new rules requires the inte-
gration of fuzzy membership functions. The literature has con-
sidered all three possible approaches (see the section II-A): the
Michigan-like approach [34], the Pittsburgh-like approach [28]
and the iterative approach [24]. In the Pittsburgh approach,
the representation most used for the classifier populations are
the relational matrices and the decision tables. In the case of
the Michigan approach, the classifiers are encoded in simple
rule lists. To encode an individual rule, bit strings with fixed
length are commonly employed [24], or in a better way using
messy-coding (see the next section). In the case of the iterative
approach, the best rule is selected each time. This rule is
incorporated into the current set of rules. To obtain new and
different rules, the selected rule is penalized by eliminating
the samples covered by this rule and the process is repeated
[24]. The database representation contains the definitions
of the scale factors and the membership functions for the
associated fuzzy set, with the linguistic terms used. Contrary
to the rule base, the learning of a database is more complex
[75]. Indeed, the components representation of a database and
consequently the search space are heterogeneous. In this case,
it might be more suitable to use optimization techniques, for
instance funing, to optimize an existing database instead of
discovering a new one, i.e. to find the optimal parameters for
the membership functions or the scale factors.

The algorithm shown in figure 7 describes the general
process of a LFCS [73].

1. The detectors perceive the input messages from the
environment. They are encoded in fuzzy messages (the
continuous values are converted into fuzzy values, chosen in a i
limited set of possible values) and these values are added to a
message list [¢] T

2. The classifier base [P] is traversed in order to find all the
classifiers with which the conditions are completely or partially
satisfied by the messages of the list [¢]. These messages are sent
in the list [M]

¥

‘ 3. The list [¢] is emptied ‘
¥

‘ 4. The actions of the classifiers from [M] are put in a list [A] ‘

¥
5. The effectors convert using a defuzzification operator the fuzzy
messages from the list [A] into acceptable (for the environment)
output values and they propagate these values there

6. The environment reward is transmitted to the selected
ifiers in the list [A]

‘ 7. A new cycle starts (go in 1.) }—

Fig. 7. The process of a LFCS algorithm.

LFCS seem to produce comprehensive classifiers, and the
representation of the knowledge seems to be higher, compared
to others LCS. However, it appears that the stability of the
algorithms through the parametrization is not so good. For in-
stance, Casillas [14] describes a theoretical study (i.e. without
real case studies) about using Mamdani-type fuzzy classifiers
instead of the traditional binary or real representation. In

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

general, fuzzy-based systems use cooperative inference to
generate the fuzzy output: all the rules that are fired are used
under an implication, an aggregation and a defuzzification
operator [89], while classifier systems have a competitive
behavior. In his proposal, Casillas studies several implication
operators showing the effect on the results. In spite of the
simple fuzzy representation used (compared to those used in
fuzzy-based systems), specific cares about the parametrization
are still needed.

Nevertheless, LFCS systems enable the use of fuzzy mem-
bership functions and allow fuzzy approximation of the input
and, more important, ouput variables rather than using an
exact activation function such as the LCS. Now, in spite of
the apparent power of these classifiers, it is not obvious that
the LFCS-like systems are able to build effective rule chains
of a given size, for instance to solve multi-step problems. It
seems, according to Furuhashi [21], that when new classifiers
are sought by the system, the inaccuracy transferred from a
classifier to another by the fuzzy variables explodes and that
nothing can be deduced any longer by the system.

C. The S-classifiers

The binary representations of the classifiers have two main
drawbacks: firstly, sometimes the binary encoding of the
detectors is not well suited when the environment structure is
continuous. Secondly, there is a fixed mapping between the bit
positions in a classifier <condition> part and the bit positions
of the detectors, that prohibits variable size messages.

Up until now, the applications solved by classifier systems
have been sufficiently satisfied with a binary representation,
because the learning capability of the system was regarded
as more important than its generalization capability. Lanzi
realized that the representation problem becomes a question
of increasing interest. In his two papers ([41] and [42]), he
proposed two new approaches for the classifiers formalism,
by introducing the S-classifiers.

The first, called messy-coding, is exempted from the fixed
mapping between the bit positions in the <condition> part
and the bit positions of the detectors. This technique allows
the conditions to have a variable size: the genes are divided
into several independent blocks. To align each classifier block
with each detector, each block is mapped to a tag which itself
refers to a detector. The model allows a classifier with two
genes having the same fag (over-specified classifier) or missing
genes (under-specified classifier). The generalization property
using joker symbols is now naturally expressed by under-
specified classifiers. In the messy-coding, the representation of
a classifier is a variable-sized list of <variable, value> pairs, in
which the order does not have any importance. All this work
has resulted to the implementation of XCSm [41], a suitable
version of XCS for the messy-coding, in which the covering
operator, the activation operator and the genetic operators have
been rewritten.

The second approach, suggested by Lanzi, goes in the
same direction of classifier representation improvement. The
system eXtended Classifier System in LISP (XCSL) [42] is an
extension based on the S-expressions of the LISP language.

Although these expressions are written in a linear way, the
genetic operators manipulate them as trees to reduce the
evaluation time. But in his paper, Lanzi only considered simple
problems for his XCSL system: the solutions have to be
expressed by boolean functions. The <condition> parts of the
classifiers are compositions of the logical operators AND, OR
and NOT.

<cond> := "(" NOT <cond> ")"
" (" AND <cond> <cond> ")"
"(" OR <cond> <cond> ")"

<var>

<var> := "XO" | "X1" | "X2"

Fig. 8. The BNF grammar of the XCSL classifiers.

All the classifier conditions of XCSL are generated by the
BNF grammar [53] presented in figure 8. These conditions
fit in a boolean functions subset of three input variables.
In the figure, the terminal symbols are represented between
quotation marks and the functional symbols between brackets.
This grammar was used for the boolean function problem?. For
instance, « (OR S1 S2) » is the expression of a complete con-
dition, where S1 and S2 are environment-dependent terminals
(a boolean variable in the multiplexer problem, a predicate for
the orientation sensors in the labyrinth problem, ...).

There exists the same differences compared with XCS, as in
the first approach. Some operators are modified in a suitable
way:

o The activation operator does not present a particular
difficulty, and the expression is just evaluated observing
the traditional LISP syntax,

o The covering operator, used to create a new classifier with
random condition when no classifier is activated by the in-
put message, requires some attention. Lanzi realized that
to avoid an over-fitting problem, induced by an under-
specialization of the classifier genes, it is better to build,
for the condition, a conjunction of three expressions,
each one being activated by the input message. Each one
of these sub-expressions is a disjunction of an arbitrary
number of bits from the input message, except for the
first sub-expression which stores the exact message. This
representation guarantees a specific classifier for the input
message, while the two last sub-expressions introduce a
generalization capability. Unfortunately, the author does
not explain why the choice of three sub-expressions gives
optimal results in his experiments.

o The genetic operators: In XCSL, the GA is applied to
the Action Set [81] (see the section V-A). Two classifiers
are selected with probabilities proportional to their fitness,
copied, combined with the probability y, mutated with the
probability p and reinserted in their Action Set. Genetic
programming principles [39] are used for the crossover
and the mutation operators: the crossover exchanges two
sub-trees in the condition part, and the mutation replaces
a sub-tree by a randomly-created one.

3Function f of n variables (zo, . . .,) defined by f : {0, 1} — {0,1}.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Discussing the classifier representation, Lanzi points out a
subtle problem occurring with the OR operator just-defined,
which neither occurs with the other boolean operators, nor
even in the typical XCS binary classifiers. He shows that
a higher representation level introduces a bias which lets
the genetic algorithm create corrupted classifiers and leads
to an instability of the system (in fact, the total accuracy
measurement will oscillate*). A suggested solution may be
in a random reordering of the evaluations of the conditions
containing the OR operator, during a specific step of the
genetic generations.

This system was also tested in the multi-step environments
such as labyrinths, in which the OR-function bias proved to
be more restrained. This may be explained by the fact that
in a single-step problem the over-general conditions are more
frequent because the search space is more deeply explored.
In a labyrinth, a condition is never active over a long time
period because the input message changes frequently, as the
agent moves within its environment.

The XCS and the XCSL systems were tested in quasi-
similar environments, both for single-step and for multi-step
problems, allowing the experimental comparison of their per-
formances. Optimal performances were obtained in both cases
on all kind of problems with a restricted number of learning
steps. The classifiers of XCSL seem to be comprehensive and
the representation of the knowledge allows to export them
for human experts, or to re-learn them in another algorithm.
However, many problems still need to be solved, with the
emergent apparition of the LISP formalism. Currently, this
formalism is undoubtedly too little explored in the domain of
classifier systems. Among these problems, we can quote the
computation of the generalization degree (or, on the contrary,
the specificity) of a classifier. With binary representation, this
is a trivial problem: only the joker symbols need to be counted.
With the S-expressions, this problem is much more complex
(NP-complete if we need to compare all the nodes of each
tree). This strongly restricts the use of some improvements
suggested by Wilson [81], in particular the subsumers removal,
unless in the presence of some particulary efficient heuristics.
Another problem is the increase in complexity of the classifier
conditions, which require more processor time to be computed.

4To illustrate, let (a) and (b) be two classifiers defined as:

(a) if C1 then action A

(b) if C2 then action A

where C1 and C2 are conditions derived from the <cond> symbol of the
BNF grammar presented in figure 8. In fact, these classifiers are similar in
any point to the following classifier (c), because this classifier applies in the
same situations as the classifiers (a) and (b) and returns the same action A:

(c) if C1 or C2 then action A

If C2 is slightly more a specific condition than C1, we can imagine that,
for a relatively long time period, the input message activates the C1 condition
more frequently than C2. If the system uses the classifiers (a) and (b), the
accuracy of classifier (b) will decrease and it will be finally dropped. On
the other hand, if the system uses the classifier (c), the C2 condition will
not influence the growth of the classifier accuracy, even if the C2 condition is
completely irrelevant, or false. In this case, the algorithm can create ineffective
classifiers, without be informed about that. Such a condition is called by Lanzi
a hidden condition by the OR operator.

From this, he concluded that some condition parts of a classifier might be
altered without negatively influencing its accuracy (and consequently without
these classifiers or conditions being able to be eliminated) as long as all the
parts of the conjunction have not been checked.

Again, heuristics for simplification and/or expressions evalua-
tion might be developed.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, a panorama of classifier systems has been
overviewed and analyzed, from the representation point of
view. The criteria, such as the comprehensibility, the al-
gorithmic independence or the scalability with huge data
have been used to compare the extracted classifiers or the
learning algorithm itself. A taxonomy of classifier systems
has been then proposed, in which the representation criterion
is detailed. Some examples of recent LCS are given, using
representations known as binary, integer, nominal, real, fuzzy,
neural and functional. To introduce the discussion about the
recent LCS, a simplified model of a LCS has been presented,
and the communication of classifiers and messages from one
component to another was also detailed. We have seen that in
LCS, two main operators are used to evolve the classifiers: the
Cover Operator (TCDO) for the initialisation, and the Genetic
Operator (TGAO) for the discovery of new classifiers and the
exploitation of existing classifiers.

Three classifier systems have been detailed: the Wilson
classifier XCS, LFCS, and XCSL. New directions are now
explored, considering multi-agent problems [27], [33], [36],
[70] and anticipatory learning [10], [25]. These systems are
able to learn latently (i.e. learning without getting a reward)
a complete mapping of the environment. The representation
is then extended in consequence (for instance, the expectation
part in anticipatory learning, a population of classifiers for
MAXCS, ...). However, these systems have not yet been tested
on real problems.

Presently, new models are being developed in this direction.
The new models are based on the concept of niching, such
as the Implicit Niching model or the COGIN method. Niching
promotes the co-evolution of the individuals. Distributed mod-
els promoting the independent evolution of individuals also
appears, such as the Island Model Gentic Algorithm model.
The main interest of this model is that it can be very easily
paralleled: at the end of n iterations, x% of the population is
sent to the closest processor, which replaces the same part of
its population. With one island for each processor, the whole
unit can deal with the complete population in a simultaneous
way.

Modern applications now show a growing interest in the
LCS field. The extraction of knowledge in a form of com-
prehensive and readable rules is used in many real-world
applications, including, for instance, classification ([4], [74],
[77]), object recognition ([60], [59]), robot problems ([79],
[51], [6]), steel production [8] and even poker [63].

ACKNOWLEDGEMENTS

The authors would like to thank Paul Montgomery, from the
Louis Pasteur University, Strasbourg, France, for dedicating
his time to improve the first version of this paper.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

REFERENCES

M. Ahluwalia and L. Bull. A genetic programming classifier system. In
Proceedings of the Genetic and Evolutionary Computation Conference
— GECCO-99, pages 11-18, Morgan Kaufmann, 1999.

A. J. Bagnall and G. C. Cawley. Learning classifier systems for data
mining: A comparison of XCS with other classifiers for the forest cover
dataset. In Proceedings of the IEEE/INNS International Joint Conference
on Artificial Neural Networks (IJCNN-2003), Portland, 2003.

A. G. Barto and P. Anandan. Pattern-recognizing stochastic learning
automata. IEEE Transactions on Systems, Man and Cybernetics, 15:360—
375, 1985.

E. Bernad6-Mansilla and J. M. Garrell-Guiu. Accuracy-based learning
classifier systems: Models, analysis and applications to classification
tasks. Evolutionary Computation, 11(3):209-238, 2003.

C. Bishop. Neural Networks for Pattern Recognition. Oxford: University
Press, 1995.

A. Bonarini. Fuzzy and crisp representations of real-valued input for
learning classifier systems. In Proceedings of Genetic and Evolution-
ary Computation Conference 99 (GECCO 99), pages 52-59, Morgan
Kaufmann, San Francisco, 1999.

L. B. Booker, D. E. Goldberg, and J. H. Holland. Classifier systems
and genetic algorithms. Artificial Intelligence, 40:235-282, 1989.

W. Browne, K. Holford, C. Moore, and J. Bullock. An industrial learn-
ing classifier system: The importance of pre-processing real data and
choice of alphabet. Engineering Applications of Artificial Intelligence,
13(1):25-36, 2000.

L. Bull and T. O’Hara. An accuracy-based neural classifier system.
Technical report, UWE Learning Classifier Systems Group Technical
Report - UWELCSGO01-008, 2001.

M. V. Butz. Anticipatory Learning Classifier Systems. Volume 4 of
the Series Genetic Algorithms and Evolutionary Computation GENA,
Kluwer Academic Publishers, 2002.

M. V. Butz and D. E. Goldberg. Bounding the population size in XCS
to ensure reproductive opportunities. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2003), 2003.

M. V. Butz, D. E. Goldberg, P. L. Lanzi, and K. Sastry. Bounding
the population size to ensure niche support in XCS. Technical Report
2004033, Department of General Engineering The University of Illinois,
Urbana-Champaign, 2004.

B. Carse and A. G. Pipe. X-FCS: A fuzzy classifier system using
accuracy based fitness - first results. In Proceedings of the International
Conference on Fuzzy Logic and Technology (EUSFLAT), pages 195-198,
2001.

J. Casillas, B. Carse, and L. Bull. Fuzzy-xcs: an accuracy-based fuzzy
classifier system. In Proceedings of the XII Congreso Espaiiol sobre
Tecnologia y Logica Fuzzy (ESTYLF 2004), pages 369-376, 2004.

O. Cordon, F. Herrera, F. Gomide, F. Hoffmann, and L. Magdalena. Ten
years of genetic fuzzy systems: Current framework and new trends. In
IFSA/NAFIPS, Vancouver, 2001.

O. Cordoén and F. Herrera. Genetic Algorithms in Engineering and
Computer Science, chapter A general study on genetic fuzzy systems,
pages 33-57. John Wiley and Sons, 1995.

H. H. Dam, H. A. Abbass, and C. Lokan. Be real! xcs with continuous-
valued inputs. In Proceedings of the 2005 Genetic And Evolutionary
Computation Conference, pages 85-87, 2005.

I. De Falco, A. Della Cioppa, and E. Tarantino. Discovering interesting
classification rules with genetic programming. Applied Soft Computing,
1(4):257-269, 2001.

K. A. DeJong. Using genetic algorithms to learn task programs: the Pitt
Approach. Machine Learning, 2(2-3), 1988.

U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. From
data mining to knowledge discovery: An overview. In Advances in
Knowledge Discovery and Data Mining, pages 1-34, Menlo Park, 1996.
T. Furuhashi, K. Kakaoka, K. Morikawa, and Y. Uchikawa. Controlling
excessive fuzziness in a fuzzy classifier system. In Proceeedings of the
Fourth International Conference on Genetic Algorithms, 1993.

D. E. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, Reading, Mass, 1989.

D. E. Goldberg. Algorithmes génétiques, exploration, optimisation et
apprentissage automatique. Addison-Wesley, Paris, 1994.

A. Gonzalez and R. Perez. Slave: a genetic learning system based on an
iterative approach. IEEE Transactions on Fuzzy Systems, 7(2):176-191,
1999.

P. Gérard, W. Stolzmann, and O. Sigaud. Yacs : a new learning classifier
system using anticipation. Journal of Soft Computing, 6(3-4):216-228,
2002.

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

(471

[48]

[49]

[50]
[51]

S. Haykin. Neural Networks. Prentice Hall (seconde édition), 1999.

L. M. Hercog and T. C. Fogarty. Analysis of inductive intelligence
in XCS-based multi-agent system (MAXCS). In In J.Periaux, P. Joly,
and E. Onate, editors, Innovative Tools for Scientific Computation in
Aeronautical Engineering, pages 351-366, CIMNE, Barcelona, 2001.
F. Hoffmann and G. Pfister. Evolutionary design of a fuzzy knowledge
base for a mobile robot. International Journal of Approximate Reason-
ing, 17(4):447-69, 1997.

J. H. Holland. Adaptation in natural and artificial systems. Cambridge:
MIT Press, 1975.

J. H. Holland. Properties of the bucket brigade. In Proceedings of the
International Conference on Genetic Algorithms, Hillsdale, 1985.

J. H. Holland. Machine learning: An artificial intelligence approach,
vol. 2, chapter Escaping brittleness: The possibilities of general purpose
learning algorithms applied to parallel rule-based systems. Morgan
Kaufmann, San Mateo, 1986.

J. H. Holland and J. S. Reitman. Pattern-directed inference systems,
chapter Cognitive systems based on adaptive algorithms. New York:
Academic Press, 1978.

N. Ireson, Y. J. Cao, L. Bull, and R. Miles. @A communication
architecture for multi-agent learning systems. In Proceedings of the
EvoNet Workshops - EvoTel 2000, pages 255-266, 2000.

H. Ishibuchi, T. Nakashima, and T. Murata. Performance evaluation
of fuzzy classifier systems formultidimensional pattern classification
problems. /EEE Transactions on Systems, Man and Cybernetics - Part
B: Cybernetics, 29:601-618, 1999.

H. Ishibuchi, K. Nozaki, and N. Yamamoto. Selecting fuzzy rules
by genetic algorithm for classification problems. In Second IEEE
International Conference on Fuzzy Systems, pages 1119-1124, 1993.
Y. Ishikawa and T. Terano. Co-evolution of multiagents via
organizational-learning classifier system and its application to marketing
simulation. In Proceedings of the 4th Pacific-Asia Conf. on Information
Systems (PACIS-2000), pages 1114-1127, 2000.

L. Jouffe. Actor-critic learning based on fuzzy inference system. In
Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics, pages 339-344, Beijing, 1996.

E. Kentala, J. Laurikkala, I. Pyykko, and M. Juhola. Discovering
diagnostic rules from a neurotologic database with genetic algorithms.
Annals of otology, rhinology, and laryngology, 108(10):948-954, 1999.
J. R. Koza. Genetic Programming - On the programming of computers
by means of natural selection. Cambridge: The MIT Press/Bradford
Books, 1992.

J. R. Koza, F. H. Bennett, D. Andre, and M. A. Keane. Genetic
Programming III: Darwinian Invention and Problem Solving. Morgan
Kaufmann, 1999.

P. L. Lanzi. Extending the representation of classifier conditions. Part
I: From binary to messy coding. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-99), pages 337-344,
1999.

P. L. Lanzi. Extending the representation of classifier conditions. Part
II: From messy coding to s-expressions. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-99), pages pages
345-352, 1999.

M. Laviolette and J. W. Seaman. The efficacy of fuzzy representations
of uncertainty. IEEE Transactions Fuzzy Systems, 2(1):4-15, 1994.

M. H. Lim, S. Rahardja, and B. H. Gwee. A ga paradigm for learning
fuzzy rules. Fuzzy Sets and Systems, 82(2):177-186, 1996.

Y. Lin and G. A. Cunningham III. A new approach to fuzzy-neural
system modeling. [EEE Transaction on Fuzzy Systems, 3(2):190-198,
1995.

E. B. Mansilla and T. K. Ho. Domain of competence of xcs classi-
fier system in complexity measurement space. IEEE Transaction on
Evolutionary Computation, 9(1):82-104, 2005.

Y. Marchand and R. I. Damper. A multi-strategy approach to improving
pronunciation by analogy. Computational Linguistics, 26(2):195-219,
2000.

A. R. McCallum and K. A. Spackman. Using genetic algorithms to
learn disjunctive rules from examples. In Proceedings of the seventh
international conference on Machine Learning, pages 149-152, 1990.
R. S. Michalski. A theory and methodology of inductive learning. In
R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine
Learning: An Artificial Intelligence Approach, pages 83—134. Springer,
Berlin, Heidelberg, 1984.

T. Mitchell. Machine Learning. McGraw Hill, 1997.

D. E. Moriarty and R. Miikkulainen. Efficient reinforcement learning
through symbiotic evolution. Machine Learning, 22:11-33, 1996.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

[52]

[53]

[54]

[55]

[56]

[571

[58]

[591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

[70]

(711

[72]

(73]

[74]

(751

[76]

D. Nauck and R. Kruse. A neuro-fuzzy method to learn fuzzy
classification rules from data. Fuzzy Sets and Systems, 89(3):277-288,
1997.

P. Naur. Revised report on the algorithmic language algol 60. In
Communications of the ACM, Vol. 3, No.5, pages 299-314, 1960.

E. Noda, A. A. Freitas, and H. S. Lopes. Discovering interesting
prediction rules with a genetic algorithm. In Proceedings of the Congress
on Evolutionary Computation, volume 2, pages 1322-1329, 1999.

A. Parodi and P. Bonelli. A new approach to fuzzy classifier systems.
In Proceedings of the Fifth International Conference on Genetic Algo-
rithms, pages 223-230, San Mateo: Morgan Kaufmann, 1993.

E. L. Post. Formal reductions of the general combinatorial decision
problem. American Journal of Math, 52:264-268, 1943.

M. A. Potter, K. A. De Jong, and J. J. Grefenstette. A coevolutionary
approach to learning sequential decision rules. In Proceedings of the
Sixth International Conference on Genetic Algorithms, pages 366-372,
1995.

A. Quirin and J. J. Korczak. Representation of genetic individuals for
unmixing multispectral data. In 2005 IEEE Congress on Evolutionary
Computation (CEC 2005), Edinburg, 2005.

A. Quirin and J. J. Korczak. Genetic and Evolutionary Computation
in Image Processing and Computer Vision, chapter Discovering of
Classification Rules from Hyperspectral Images. Springer-Verlag, LNCS
Series, vol. 2936, 2006.

A. Quirin, J. J. Korczak, M. V. Butz, and D. E. Goldberg. Learning
classifier systems for hyperspectral images processing. Technical Re-
port ULP-LSIIT-RR-2004-01, Laboratoire des Sciences de 1’Image, de
I’Informatique et de la Télédétection, CNRS, Université Louis Pasteur,
Illkirch, 2004.

A. Quirin, J. J. Korczak, M. V. Butz, and D. E. Goldberg. Analysis and
evaluation of learning classifier systems applied to hyperspectral image
classification. In 5th International Conference on Intelligent Systems
Design and Applications (ISDA 2005), pages 280-285, Wroclaw, 2005.
M. V. Rendon. Reinforcement learning in the fuzzy classifier system.
Technical report, Institut Technologique des Etudes Supérieures, Mon-
terrey, 1997.

C. Reveley. A learning classifier system adapted for hold’em poker.
Master’s thesis, Birkbeck College, University of London, 2002.

R. A. Richards. Classifier Systems & Genetic Algorithms, chapter
Zeroth-Order Shape Optimization utilizing a Learning Classifier Sys-
tem, document available at http://www.stanford.edu/~buc/SPHINcsX/
book.html. 2001.

R. L. Riolo. Empirical Studies of Default Hierarchies and Sequences
of Rules in Learning Classifier Systems. PhD thesis, Computer Science
and Engineering Department, University of Michigan, 1988.

J. Schaeffer and D. Schuurmans. Representational difficulties with
classifier systems. In International Conference of Genetic Algorithms,
pages 328-333, 1989.

C. Stone and L. Bull. For real! xcs with continuous-valued inputs.
Evolutionary Computation, 11(3):299-336, 2003.

R. Sutton and A. Barto. Reinforcement learning: An introduction. The
MIT Press, 1998.

R. S. Sutton. Reinforcement learning architectures. In Proceedings
ISKIT’92 International Symposium on Neural Information Processing,
Fukuoka, 1992.

K. Takadama, H. Inoue, M. Okada, K. Shimohara, and O. Katai.
Agent architecture based on interactive self-reflection classifier system.
International Journal of Artificial Life and Robotics (AROB), 2001.

K. Takadama, T. Terano, and K. Shimohara. Learning classifier systems
meet multiagent environments. In Proceedings of the International
Workshop on Learning Classifier Systems (IWLCS-2000), in the Joint
Workshops of SAB 2000 and PPSN 2000, 2000. Extended abstract.

M. Valenzuela-Rendén. The fuzzy classifier system: a classifier system
for continuously varying variables. In Proceedings of the Fourth
International Conference on Genetic Algorithms, pages 346-353, San
Mateo: Morgan Kaufmann, 1991.

M. Valenzuela-Rendén. Reinforcement learning in the fuzzy classifier
system. Expert Systems with Applications, 14(1-2):237-247, 1998.

G. Valigiani, C. Fonlupt, and P. Collet. Analysis of GP improvement
techniques over the real-world inverse problem of ocean colour. In
EUROGP’04, Coimbra, 2004.

J. R. Velasco. Genetic-based on-line learning for fuzzy process control.
International Journal of Intelligent Systems, 13(10-11):891-903, 1998.
G. Venturini. SIA: a supervised inductive algorithm with genetic search
for learning attribute based concepts. In Proceedings of the European
Conference on Machine Learning, pages 280-296, Viena, 1993.

(771

(78]

(791
[80]

[81]

[82]

[83]

[84]

[85]

[86]

(871

[88]

[89]

D. Walter and C. K. Mohan. ClaDia: A fuzzy classifier system for
disease diagnosis. In Proceedings of the 2000 Congress on Evolutionary
Computation (CEC00), pages 1429-1435, 2000.

L.-X. Wang and J. M. Mendel. Generating fuzzy rules by learning
from examples. IEEE Transactions on Systems, Man and Cybernetics,
22(6):1414-1427, 1992.

S. W. Wilson. ZCS: A zeroth level classifier system. Evolutionary
Computation, 2(1):1-18, 1994.
S. W. Wilson. Classifier fitness based on accuracy. Evolutionary

Computation, 3(2):149-175, 1995.

S. W. Wilson. Generalization in the XCS classifier system. In
Proceedings of the Third Annual Genetic Programming Conference,
pages 665-674, Madison (WI), Morgan Kaufmann, San Francisco, 1998.
S. W. Wilson. Get real! xcs with continuous-valued inputs. In Learning
Classifier Systems. From Foundations to Applications, Lecture Notes in
Artificial Intelligence (LNAI-1813), pages 209-219, 2000.

S. W. Wilson. Learning Classifier Systems: From Foundations to
Applications, LNAI 1813, chapter Get real! XCS with continuous-valued
inputs, pages 209-220. 2000.

S. W. Wilson. Mining oblique data with XCS.
Computer Science, 1996:158-176, 2000.

S. W. Wilson. Function approximation with a classifier system. In
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), pages 974-981, San Francisco, 2001.

S. W. Wilson. Mining oblique data with xcs. In Advances in Learning
Classifier Systems. Proceedings of the Third International Workshop
(IWLCS-2000), Lecture Notes in Artificial Intelligence (LNAI-1996),
pages 158-174, 2001.

C. M. VWitkowski. Schemes for Learning and Behaviour: A New
Expectancy Model. PhD thesis, University of London, 1997.

Y. Yuan and H. Zhuang. A genetic algorithm for generating fuzzy
classification rules. Fuzzy Sets and Systems, 84(1):1-19, 1996.

. A. Zadeh. Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected
Papers. World Scientific Publishing, 1996.

Lecture Notes in

