Research Report #1 - ECSC - Mieres

Research Report #1 - Algorithms to generate PFNet maps

A. Quirin, O. Cordon - March 30, 2007

Abstract

Visual Science Maps are used to analyze and measure the information contained in the scientific
papers. They are graphs and they represent the main connections between several entities, that could
be scientific domains, journals or authors. The main connections between two entities are represented
by an edge in the final graph. This can be used to print graphically the scientific contribution of
a country, or the whole world. Several algorithms exist in the literature to start from an adjacence
matrix (describing by weights the similarities between two entities), and to obtain a final pruned
graph, in which only the main connections are remaining. One of this algorithm is called PFNet. In
this paper, we first analyze the behavior of PFNet, by giving an intuitive interpretation, and then we
propose several algorithms giving the same result as PFNet, but in a shorter time. Some maps are
printed and the results are discussed.

1 Introduction

The representation named Visual Science Maps is a technique applied to scientific literature able
to analyze and measure the information contained in the scientific papers. Bibliometrics is the study, or
measurement, of texts and information. Content analysis is a type of bibliometrics. While it is most often
used in the field of library and information science, it has wide applications in other areas. Historically
bibliometric methods have been used to trace relationships amongst academic journal citations. Citation
analysis, which involves examining an item’s referring documents, is used in searching for materials and
analyzing their merit. Citation indexes, such as Institute for Scientific Information’s Web of Science,
allow users to search forward in time from a known article to more recent publications which cite the
known item [4].

Graphs represent a new representation of the statistics collected during citation analysis. Graphs can
represent many aspects of statistical data, using different shapes, sizes and labels for the nodes and/or
the links. Graphs can be used to represent the scientific contribution of a single team, or a country, or
even the contribution of the whole world. In our case, nodes can represent authors, journals or scientific
domains and a link between two nodes is valued by a weight. This weight is given by a similarity measure,
corresponding to the co-citation degree between the two entities.

These graphs are generated using a modified PFNet algorithm, starting from the values of all the
links between the nodes of a given graph. The next section provides a description of the original PFNet
algorithm and the section 3 describes the modified algorithm. In the section 4, two adaptations of Shortest
Path algorithms are compared and discussed, with some examples. In the section 5, three adaptations of
Minimum Spanning Tree algorithms are discussed and compared and some examples are shown. Then,
a conclusion is proposed.

2 The PFNet algorithm

In our research, these graphs are produced using the PFNet algorithm [3]. Its goal is the extraction
of the main structure of a network by the mean of the analysis of the proximity among their variables.
The result is a graph, not a tree. PFNet algorithm can only be applied on non-negative weights. Only the
best paths connecting two nodes are kept, and these best paths are found according to a metric governed
by two parameters. The similarity between two nodes is represented as a Minkowski distance with a

Research Report #1 - ECSC - Mieres

parameter r, which may be fixed to oo, thus being equivalent to the maximum of the intermediate link
weights found in the path connecting these two nodes. The second parameter, ¢, restricts the number of
links among the elements. Every path connecting two nodes that violate the triangular inequality, having
an associated Minkowski distance lesser than any other path between the same two nodes composed of
up to ¢ links, will be removed. The maximum possible value for ¢ is n — 1, with n being the number of
nodes in the network.

To generate a PFNet network, two matrices are used.

° Wj(,? indicates the minimum cost to go from the node j to the node k by following exactly ¢ links,

and this matrix is computed recursively using the matrix Wj(,i_l). W@ is the original matrix of
weights.

° DJ(Z) indicates the minimum cost to go from the node j to the node k by following ¢ links or less,

and this matrix is computed recursively using the matrices Wj(,i) e Wj(,?.

The original PFNet algorithm is:

1. Compute W0+) = W @ W, as follows: w§2+1) = MIN((wjm)" + (wmi)")M/", for 1 <m < n.
2. Compute D as follows: by, = MIN(wjy, ..., wh,), for j # k.
3. Continue until W? and D? are computed.

4. Compare W' and DY : all the edges having the same values in these two matrices belong to the
final PFNet graph.

For an intuitive interpretation of the original PFNet algorithm, we can consider that we look for a
graph that keep only the smallest collars in the graph. A collar is the link with the maximum value on
a path used to join a node from another one. Then, the minimum collar is found among all the possible
paths, and correspond to the link with the minimum value. A simplified algorithm could be:

1. Sort the edges by their ascending values, and traverse them in this order.

2. Only keep the edges N;-N; representing a minimum collar (all the other paths joining Ny from
N; should have a bigger value).

3. The suppressed edges should not be considered anymore, but this is not mandatory for the right
terminaison of the algorithm.

~ The algorithm stops when the direct path between two nodes (W1) is equal to the smallest collar
(D) for at most ¢ edges (when ¢ = ¢). This is the stop criterion of the original PFNet algorithm.

3 The modified PFNet algorithm

In our case, we use the value n — 1 for the parameter ¢, to be sure that the optimal path is found
among all the nodes, and the value oco for the parameter r, to consider the path having the maximum
value. In fact, because our research is applied to Visual Science Maps, we prefer to use a modified

(i+1)

version of the original PFNet algorithm. In the modified version, the original expression w; =

MIN ((wjm)"+ (wmr)")/" is replaced by wj(.?_l) = MAX{MIN(wj,, w! ,)}. Looking for the best minimum
path, instead of the best average (with r = 2) or any other path, gives special interesting properties to
the final representation. For instance, this is equivalent to a flow problem when for each path, we look

Research Report #1 - ECSC - Mieres

for the minimum link (viewed as a bottleneck), and then we look for the larger bottleneck (this is the
traduction of the MAX(MIN(...)) expression).
The modified PFNet algorithm is:

1. Compute W+ = W © W, as follows: wj(?’l) = MAX{MIN(w;p,,w? ;)}, for 1 <m < n.
2. Compute D, as follows: d%y = MAX(wjy,, . .., why), for j # k.
3. Continue until W”~! and D"~! are computed.

4. Compare W' and D"~ ! : all the edges having the same values in these two matrices belong to
the final PFNet graph.

In a Visual Science Map, keeping the largest bottleneck link L between two nodes can be viewed
intuitively as a way to only let connected the domains (or journals, or authors, ...) in which no other
path can pass through nodes having a similarity greater than the value of L. So, the fact that two
domains (or authors, ...) are connected means that these two domains have a strong relationship, better
than any other relationship observed among any other path connecting these two domains.

Actually, this algorithm was implemented in C, and has a complexity of O(qn?). The input of this
algorithm is a matrix of similarities, or a list of edges with their corresponding weights. The output is
the list of edges in the PFNet graph, with their corresponding weights. Then we use a graph drawing
algorithm based on energies [2] to convert the output of the algorithm in a graphical representation. The
Kamada-Kawai algorithm insures that the resulting graph will not have many link crossings and that
nodes having strong links (large weights) are closer.

Fig. 2 shows the result of the modified PFNet algorithm for the Argentina Science map (Ar-
gentina.net), using the Kamada-Kawai algorithm to redistribute the nodes in a better way. Fig. 3 gives
some examples of the computing times observed on a 2.80 GHz CPU, with 2 GB of memory, running the
Linux OS. As it can be seen, the delay are quite long, even on a recent processor.

4 Shortest Path algorithms

According to the long delay shown in Fig. 3, and because real time applications need fast algorithms,
we have tried to design faster algorithms, producing exactly the same results than the modified PFNet
algorithm. To design these new algorithms, the procedure was always the same: (1) modify some well-
known graph processing algorithms in a way that the behavior of the parameters ¢, and the bottleneck
behavior remain the same, (2) analyze these new algorithms to know if the produced graphs are the same
or not, and (3) if not, find properties characterizing the missing or the edges in excess to improve the
algorithms. Only algorithms having an original complexity of O(n?) (or less) have been selected.

4.1 The Floyd-Warshall algorithm

The Floyd-Warshall algorithm is an algorithm giving the shortest paths between any source node and
any destination node. The result includes two matrices: a cost matrix M;; where m;; is the minimum cost
to join the node j from the node i, and a predecessor matrix P;; where p;; is the index of the predecessor
of the node j among the optimal path to reach j from the node i. The Floyd-Warshall algorithm has been
selected to substitute the costly computation of the matrices W and D in the original PFNet algorithm.
As these matrices are also cost matrices, the substitution could be more effective, because the complexity
of the Floyd-Warshall algorithm is O(n?).

The original Floyd-Warshall algorithm:

1. DO =W

Research Report #1 - ECSC - Mieres

SOIINONOODH

SHONHIGSOHD
SOLLVINGHLVIN

SHONHIDSvE o5 2 =0110a5d

SHONHIOS HLLAINOD ST AHd 07151 HD

ONTIHINIONH
PN | CE AR S L ST

HONATIS § VIR IVIA
SHILINVINNH

Figure 1: A typical Visual Science Map obtain with the modified PFNet algorithm, for the scientific

contribution of Argentina (www.atlasofscience.net).

2. FOR k from 1 to ¢ + 1, do

FOR i from 1 to n, do

3.

Research Report #1 - ECSC - Mieres

o 02l
B -mwm 24l
L N
FAT rehi Hog'e 62y oo Sy
g2l e \. 6L
v, ®
R hﬂﬂ%@ el Ew_m_
Nmm
el f77 82z i
e, 8 g Sigz.n EF, m_um mmm
i, J/ I3 .l o) _.m_m h\\\NQN
85 .@T/mwm #ﬁ m_umm: b5z
957 B oc? JLLLES ﬂ%.m_”__. _w mflmwm
mmriff:: & LL I\\Mm
e .._u_m F,..__.'
=l L&w.w P N EN
BlZ, quﬁw#l :_umm; %
g :rr‘
. : H\Am__”_ o hh Qt m:,
e
Bt Lig—plig, 78 mmr-_ -me
E]
Bll,

cal o G

OEL

mm_. 5
%vmm E_H_NW
et .

g..l. - m_.,m__.

L.

j./

Ega

E.__Nl

v

are

Q\mlnﬂ ElZ

—a—®

&

LlE

LEE

Zl

Z

Figure 2: The result of the modified PFNet algorithm on the Argentina Science map.

FOR j from 1 to n, do

_1))

(k
kj

k—1 k—1
MIN(d ™D,y +d

(k) _
ij

d

Research Report #1 - ECSC - Mieres

Map Time (s)
Argentina.net 146
Chile.net 107
Cuba.net 60.4
Espana.net 114
Mexico.net 133
Portugal.net 145

Figure 3: Computing time of the modified PFNet algorithm.

4.2 The Fast-PFNet algorithm

In fact, we need to modify this algorithm to obtain the same behaviors that the modified PFNet
algorithm (r, ¢ and MAX-MIN). This algorithm, called Fast-PFNet is:

1. DO =W

2. FOR k from 1 to ¢+ 1, do

3. FOR i from 1 to n, do

4. FOR j from 1 to n, do

5. dit) = MAX(d{; ™V MIN(dy ™", i)
6. IF diy Y > MIN(dj,), d)

7. THEN p?) = p{* ="

8. ELSE p{) = p{t~V

By the substitution of the computation of the shortest path (dg:*l) + d,(!;fl)) by the computation of

the bottleneck (MIN(dE:fl), d,(;;-*l))), we obtain the same matrix D that the one obtained by the modified
PFNet algorithm.

For replacing the last part of the modified PFNet algorithm (the edge selection), two different ways
have been proposed.

In the first way, we keep the original edge selection algorithm. The matrix D? is given by the Fast-
PFNet algorithm and the matrix W' is given as a parameter of this algorithm, so the comparison is
straightforward. This edge selection has a complexity of O(n?). The final algorithm (called Fast-PFNet)
has a complexity of O(n?) + O(n?) = O(n?). In this case, the computation of the predecessor matrix is
not needed and the final algorithm is even faster. This way is the fastest way. The algorithm is:

1. FOR each node 7 € G

2. FOR each node j € G
3. IF d\)) = d*" AND d) # 0, THEN
4. (i,j) belongs to the final graph

In the second way, for 1 < k < n, we keep only the edges connected to the node k, while analyzing the
graph corresponding to the shortest paths from the single node k (pgfj) for 1 < j <n). This corresponds

Research Report #1 - ECSC - Mieres

to the inclusion, in the final graph, of the edges connecting the node p,(f;.) to the node j with a positive

weight, for 1 < k <n and 1 < j < n. The mathematical equivalence with the first way comes from

the fact that an edge connecting the node s = p,(é) to the node e = j is included in the final P matrix

only if dg? = dgg). This second way has also a complexity of O(n?), so the final algorithm has the same
complexity than before, but the predecessor matrix has to be computed, so the final time is a bit slower
(see figure 4). The algorithm is:

1. FOR each node i € G
2. FOR each node j € G
3. s = p,(g)
4. e=]
5. IF s # 0 AND s # i, THEN
6. (s,e) belongs to the final graph
Map Time for Mod-PFNet Time for FastPFN (way 1) Time for FastPFN (way 2)
Argentina.net 146 0.46 0.52
Chile.net 107 0.37 0.41
Cuba.net 60.4 0.27 0.30
Espana.net 114 0.37 0.41
Mexico.net 133 0.42 0.46
Portugal.net 145 0.44 0.50

Figure 4: Computing time (s) of the Fast-PFNet algorithms.

Note that the inclusion of all the links in the final predecessor matrix (instead of doing the edge
selection presented previously) is not a PFNet graph in the general case, even with directed or undirected
graphs. The proof is the following: if two different paths have the same minimum link in common (so
they have the same value), but the first path is shorter than the second path (in terms of number of links),
the Floyd-Warshall algorithm will always choose the shortest path, and the modified PFNet algorithm
could suppress a link in this shortest path if this link does not respect the triangular condition.

4.3 The Dijkstra algorithm

The Dijkstra algorithm has been employed not to mimic the graphs produced by the modified PFNet
algorithm, but to be able to extract trees in which the root node has a special property (for instance, the
node with the maximum number of links, ...).

In this case, several trees have been produced, depending of the property of the root node:

e Starting or ending the arc having the maximum value

Starting or ending the arc having the minimum value (and not null)

Having the minimum or maximum number of entering or outgoing links

Having the minimum or maximum sum of entering or outgoing links

Having the minimum or maximum average of entering or outgoing links

Research Report #1 - ECSC - Mieres

This leads to 16 different properties, so 16 different trees. We can notice the fact that, on Visual
Science Maps, nodes having two distinct properties could in general be the same, and this is also true for
different maps. For instance, the node starting the edge having the maximum value, having the maximum
number of links, having the maximum sum of links and having the maximum average of links, is the node
number 30 for the Argentina, Chile and Portugal maps. To give some examples, the link with the greatest
weight on the Argentina map is the link 30-38 (weight 8746), the node 30 has 235 outgoing edges, and
the average of these edges is arround 755.

Let G be the original graph, S[G] the nodes of G, d[v] the cost attribute of the node v, p[v] the prede-
cessor of the node v, w(u, v) the weight of the arc u—wv and s the chosen source node. EXTRACT-MIN(F)
is a function that extract (and remove) the node with the smallest attribute in the set F. The original
Dijkstra algorithm is:

1. FOR each node v € S[G]

2. d[v] = oo
3. plv] =0
4. dJs] =0

5. E=10

6. F = S[G]

7. WHILE F # ()

8. u = EXTRACT-MIN(F)

9. E=FuU{u}
10. FOR each node v € NEIGHBORS(u)
11. IF d[v] > d[u] + w(u,v), THEN
12. d[v] = d[u] + w(u,v)
13. plv] =u

4.4 The modified Dijkstra algorithm

A new modified Dijkstra algorithm has been designed to take into account the fact the maximum
path having the minimum link has to be found, and not the shortest path (the sum should be replaced
by MAX(MIN(...))). This modification has no influence of the computation time. The complexity of this
algorithm is O(n?), but it can be proven that a complexity of O(n.log(n) + A), where A is the number
of edges, is possible using binary heaps for the EXTRACT-MAX function [1].

The new modified Dijkstra algorithm is:

1. FOR each node v € S[G]
2. d[v] =0

3. pl] =0

4. d[s] = o0

5. E=1)

Research Report #1 - ECSC - Mieres

6. F = S5[G|
7. WHILE F #)
8. u = EXTRACT-MAX(F)
9. E=FEuU{u}
10. FOR each node v € NEIGHBORS(u)
11. IF d[v] < MIN(d[u],w(u,v)), THEN
12. dlv] = MIN(d[u], w(u,v))
13. plv] =u

Figures 5, 6 and 7 show some graphs obtained with the modified Dijkstra algorithm. The graphs
produced by applying Dijkstra algorithm on the node 30 (Fig. 5) and the node 38 (Fig. 6) correspond
graphically to what is expected with Visual Science Maps: only one cluster and nodes correctly distributed
around the central node. The graph using the node 235 (Fig. 7) is not a well shaped graph. In fact, we
have observed that graphs generated by the Dijkstra algorithm from magjor nodes (in which the statistical
criterion is related to a maximum value) are better than from minor nodes.

4.5 Comparison between modified PFNet and Shortest Path algorithms

The procedure used in the Fast-PFNet algorithm is equivalent to run the modified Dijkstra algorithm
for each node in G considering it as the source node s, and keep only the first level of the generated trees
(only the edges connected to s for each generated tree). So we can say that a modified-PFNet graph
generated from a graph G is equivalent to the set of all the top-level edges of the trees generated by the
modified Dijkstra algorithm for each node of the graph G (see Fig. 10).

Proof: at the end of the modified PFNet algorithm, are kept all the edges u — v where the cost to
join directly the node v from the node u is equivalent to the best cost among all the other paths. Any
edge of a Dijkstra tree corresponds to an edge included in the best path from a given source node s. But
in the case in which the edge with the minimum value m among all the paths is connected to the node
s, all these paths have the best value corresponding to m. In this case, only the edges connected to the
node s corresponds to the best direct edge, where the cost corresponds to the best cost among all the
other paths.

5 Minimum Spanning Tree algorithms

5.1 The MST algorithms

A Minimum Spanning Tree algorithm extract from a given graph the spanning tree (a tree connecting
all the nodes in a graph) having the minimum cost (the sum of the weights of the edges)). Algorithms
achieving this goal include Prim and Kruskal algorithms. In our study, we have looked for an algorithm
giving the same result than the modified PFNet algorithm.

5.2 The Kruskal algorithm

In the Kruskal algorithm, all the edges are sorted (smallest values first). Edges are then added one
by one in the final tree only if they do not connect the same connected component (in such a way that
cycles are avoided). In the best case, the complexity of this algorithm is O(A.log(n)) [1].

The original Kruskal algorithm is:

Research Report #1 - ECSC - Mieres

LE2

o

T

[
15

p
- N i m
JI%N

i
e BN

£
:

i

i
= #m m_amm A

i35 79 SCC
\Emtmmammﬂmm Logcls
\

10

(in the same time the node starting the edge with the maximum value, the node having the maximum
number of connected edges, and the node having the maximum average of the weights of the connected

edges).

Figure 5: The result of the modified Dijkstra algorithm on the Argentina Science map, for the node 30

Research Report #1 - ECSC - Mieres

Sz

| ._ HERL
= _.H wml/

Figure 6: The result of the modified Dijkstra algorithm on the Argentina Science map, for the node 38

(the node ending the edge with the maximum value).

2. FOR each node v € S[G]

11

Research Report #1 - ECSC - Mieres

€1z

31

L0Z

Fal

Figure 7: The result of the modified Dijkstra algorithm on the Argentina Science map, for the node 235

(the node having the minimum number of connected edges

)

CREATE-CONNECTED-COMPONENT (v)

4. F = Set of all the edges of G sorted by their weights

12

Research Report #1 - ECSC - Mieres

5. FOR each edge (u,v) € F

6. IF CONNECTED-COMPONENT (u) # CONNECTED-COMPONENT (v), THEN
7. E=FU{(u,v)}

8. CONNECT-CONNECTED-COMPONENT (u, v)

9. Return £

5.3 The modified Kruskal algorithm

We have designed a new algorithm, to take into account the behavior observed in the modified PFNet
algorithm with ¢ =n — 1, r = co and the bottleneck behavior. Because we are looking for the links with
maximum weights in the graph, we have called this class of algorithms, Maximum Spanning Tree. This
is the modified Kruskal algorithm:

1. E=0
2. FOR each node v € S[G]
3. CREATE-CONNECTED-COMPONENT (v)
4. F = Set of all the edges of G sorted by their weights, in a descending way
. FOR each edge (u,v) € F
IF CONNECTED-COMPONENT (u) # CONNECTED-COMPONENT (v), THEN

5

6

7. E=EU{(uv)}
8 CONNECT-CONNECTED-COMPONENT (u, v)
9

. Return F

By traversing the edges using a decreasing order of their weights, the first edge that will be included
in the network is the edge with the maximum value, corresponding to the best direct edge in the sense
of PFNet (because no other path could provide a better value). In a recursive way, connecting (during
the next steps) the edge with the best value to the current graph could lead in a graph similar to the one
obtained with modified-PFNet. But any Kruskal-like algorithms will produce trees, and not graphs, as
the modified PFNet algorithm does in the general case. First, have a look at a trivial example in which
the Kruskal and the Dijkstra algorithms will not produce the same graphs.

Figure 8: Left part: a graph G. Middle part: the modified-PFNet graph. Right part: the modified-Kruskal
tree.

In the figure 8, the results obtained with the modified PFNet and the modified Kruskal algorithms
are not the same. In spite of the fact that the edges with the largest values are selected first, the edge

13

Research Report #1 - ECSC - Mieres

2 — 4 is not included in the Kruskal Tree. This comes from the fact that, using the modified Kruskal
algorithm, the nodes 2 and 4 are already in the same connected component (the edge 1 — 2 was analyzed
first because it has the largest value, and we suppose that the algorithm orders the edge 1 — 4 before the
edge 2—4,s0 1 —2—41is a connected component at the step of the algorithm when 2 —4 is analyzed) and
consequently the test in the line 6 is not validated. This edge is included in the PFNet graph, because in
the modified PFNet algorithm, no strict-order comparison is applied. To be clear, in the PFNet graph,
the edge 1 — 4 with value 8 is included, in spite of the fact that the path 1 — 2 — 4 has the same value;
and the edge 2 — 4 with value 8 is also included, in spite of the fact that the path 2 — 1 — 4 has the same
value.

So, we have guessed that these edges may have a special property, corresponding to an edge existing
in a PFNet graph but not in a Kruskal tree. The property is that these edges form a group of edges with
the same value, and all of them connect (if analyzed one by one) two different connected components
(not necessarily the same). This group is named G in the following. In the Fig. 8, the edges 1 — 4 and
2 — 4 (with the same weight 8) connect (after the first step of the algorithm) the connected components
{1,2} and {4}, so they form a group G. In other words, edges connecting the same connected components
(if analyzed independantly during the line 5 of the modified Kruskal algorithm) could also be included in
the modified-Kruskal graph. Note that, in that case, the produced graph could not be a tree. This will
lead in a graph equivalent to the PFNet graph and will be proven in the section 5.8.

5.4 The K-Fast-PFNet algorithm

Now we will analyze a new adaptation of the modified Kruskal algorithm, called K-Fast-PFNet, in
which the edge-property previously explained is developped to add all the edges in a group G in the
final graph, when they are met. So the graphs produced by modified-PFNet and K-Fast-PFNet will
be always the same, even in the general case. In the previously seen modified Kruskal algorithm, two
different connected components U and V are immediatly fusioned if they are linked with the current
edge processed during the line 5. But in this case, in the next run, a just fusioned connected component
introduces a bias in the test at the line 6, and some edges could be discarded. Here the idea is to wait
until all the edges with the same values are processed (all edges of a group G), and only fusion the
corresponding components after. These edges are placed in a temporary set G (line 11), and the fusion
occurs after (lines 12-13).

This is the K-Fast-PFNet algorithm:

1. E=10
2. FOR each node v € S[G]
3. CREATE-CONNECTED-COMPONENT (v)

4. F = Set of all the edges of GG sorted by their weights, in a descending way

5. FOR each edge (u,v) € F'
6 G=10
7. FOR each edge (v/,v') € F
8. IF w(u,v) = w(u',v') AND CONNECTED-COMPONENT () #
CONNECTED-COMPONENT(v'), THEN
9. E=FEuU{@,v)}
10. F=F—{(v,v)}
11. G=GU{{W,v)}

14

Research Report #1 - ECSC - Mieres

12. FOR each edge (v/,v') € G
13. CONNECT-CONNECTED-COMPONENT (u/, v")
14. Return FE

Note that the K-Fast-PFNet algorithm has the same complexity of the modified Kruskal Algorithm
(because the size of the set of edges F' decreases each time), that is O(A.log(n)).

5.5 The Prim algorithm

In the Prim algorithm, the edge with the minimum value is selected, then a tree is growed from
this edge, adding neighbor edges. In the best case, the complexity of this algorithm is O(A + n.log(n))
[1]. For the application on the Visual Science Maps, the complexity of the Prim algorithm is better
than the Kruskal algorithm (for instance, with the Argentina maps, with 263 nodes and 19562 edges, the
complexity is about 47300 for the Kruskal algorithm, and about 20200 for the Prim algorithm).

Let d[u] and p[u] be the distance and the predecessor attributes for the node u, and s be an arbitrarly
chosen node. The original Prim algorithm is:

1. FOR each node u € S[G]

2. d[u] = oo

3. plul =0

4. d[s] =0

5. F = S[G]

6. WHILE F # ()

7. u = EXTRACT-MIN(F)

8. FOR each node v € NEIGHBORS(u)

9. IF v € F and w(u,v) < d[v], THEN
10. d[v] = w(u,v)
11. plv] =u

5.6 The modified Prim algorithm

As with the previously seen modified Kruskal algorithm, the Prim algorithm can be rewritten to take
into account the behavior of the PFNet algorithm. In this new algorithm, the node with the greatest
distance attribute is extracted from F' and is used as the root from which the growing of the tree is done.
The analogy with a PFNet graph can be seen recursively. We suppose that in a given step, the current
tree expressed by the plu| attributes is a PFNet-like tree, i.e. any path between two nodes in this tree
contains the largest bottleneck compared to all the other possible paths contained in the original graph.
This tree contains all the nodes of S — F'. The next step is to grow the tree from the node m having the
greatest value. For any edge m — n, if n is a unseen node, the edge is directly added to the tree; and if n
is a previously seen node, the edge is added only if its weight is greater than the value of n. Because m
has the greatest value, any edge added to the tree has a value greater than the link with the minimum
weight already in the tree, so that the largest bottleneck behavior is respected.

The modified Prim algorithm is:

15

Research Report #1 - ECSC - Mieres

1. FOR each node u € S[G|

2. dlu] =0

3. plul =0

4. d[s] = 00

5. F = S[G]

6. WHILE F # {

7. u = EXTRACT-MAX(F)

8. FOR each node v € NEIGHBORS(u)

9. IF v € F and w(u,v) > d[v], THEN
10. d[v] = w(u,v)
11. plv] =u

This algorithm produces trees and not graphs, so the results are not the same that ones produced
with PFNet in the general case. But for the same reasons explained previously, this algorithm can produce
the expected PFNet maps with Visual Science Maps, because the weights of the edges are not highly
similar.

It is also theoretically possible to build a P-Fast-PFNet algorithm, i.e. a version of the Prim algorithm
respecting the PFNet behavior in the general case. As seen with the K-Fast-PFNet algorithm, some edges
are missing to form the expected PFNet graph. In this case, the missing edges are those having a value
equal to the minimum weight already in the tree, so that the other possible best path are also included
in the final graph. But this requires to compare the current edge value to those already existing in the
graph, increasing in the same time the complexity of the algorithm. In the case of K-Fast-PFNet, this
sort is done in a global way at the start of the algorithm. But in the Prim case, the tree is grown in a
local way, so an additional loop is required to test for the missing edges. Note also that in this case, a
more complex predecessor list should be save, having the ability to save more than one predecessor for
each node (saving a graph, and not a tree), and being able to replace the predecessor list for a given node
when a better edge is encountered.

5.7 Results

The results are presented in Fig. 9.

5.8 Comparison between modified PFNet and MST algorithms

A modified-PFNet graph generated from a graph G is equivalent to the tree generated by a Maximum
Spanning Tree algorithm, including in addition some links having a special property (see Fig. 10). A
typical Maximum Spanning Tree algorithm (such as the modified Kruskal algorithm) analyzes edges in
an order given by their weights. But if several edges ey, ..., e, have the same weight w, and if (at a
given step of the algorithm) these edges connect two different connected components, an order is chosen
in an apriori way (for instance, first encoded, first analyzed). In this case, a MaxST algorithm will give
in fact one of the possible maximum spanning trees, including only one of these edges. It can be proven
recursively that the modified PFNet algorithm includes all of these edges (the only point is that they
have to connect different connected components if their are analyzed independantly) in the final produced
graph.

16

Research Report #1 - ECSC - Mieres

Map Mod-PFNet Fast-PFNet (way 1) Fast-PFNet (way 2)
Argentina.net 146 0.46 0.52
Chile.net 107 0.37 0.41
Cuba.net 60.4 0.27 0.30
Espana.net 114 0.37 0.41
Mexico.net 133 0.42 0.46
Portugal.net 145 0.44 0.50
Based on PFNet Floyd-Warshall Floyd-Warshall
Time complexity O(qn?) O(n?) O(n?)
Space complexity O((3 + q)n?) O(n?) 0(2n3)
Map Mod-Kruskal K-Fast-PFNet Mod-Prim
Argentina.net 0.043 0.042 0.033
Chile.net 0.054 0.051 0.042
Cuba.net 0.035 0.036 0.030
Espana.net 0.063 0.063 0.051
Mexico.net 0.061 0.064 0.047
Portugal.net 0.064 0.062 0.047
Based on Kruskal Kruskal Prim
Time complexity O(A.log(n)) O(A.log(n)) O(A+n.og(n))
Space complexity ~ O(A + 2n?) O(A + 2n?) O(A + 2n?)

Figure 9: Comparison of all the algorithms (computation times in seconds and complexities).

Proof: if each group G of size 1 and sorted by decreasing order of their weights is added one by
one to the final graph, the best remaining direct edge is added each time, corresponding to the behavior
of the modified PFNet algorithm. In the case of a group G of a size greater than 1, each edge of this
group could be added by the modified PFNet algorithm during the corresponding step of the algorithm,
because they connect two different connected components and they have the best value compared to any
other edge able to connect these two components. So, all the edges of G are included in the best path
connecting any nodes from these components, and the modified PFNet and K-Fast-PFNet algorithms are
equivalent.

We can also discuss about the probability that the modified Kruskal algorithm produces the same
results or not than the modified PFNet algorithm. These two algorithms are equivalent as long as they
are applied on any graph not containing a group G of a size greater than 1. Commonly, this kind of
graphs should have a lot of edges with similar values (at least two), and the situation is more frequently
encountered with edges having small or integer weights. As Visual Science Maps contains real and big
values, the modified-Kruskal algorithm could be used instead of the K-Fast-PFNet algorithm, having a
high probability to produce the same graphs (in fact trees), but faster. Tests have been conducted on
all the maps described in this paper (Fig. 3), and the results were the same. This is interesting, because
modified-Kruskal is a really fast algorithm, compared to the modified PFNet or Fast-PFNet algorithms
(see Fig. 9).

5.9 Mathematical comparison between MST + PFNet

The new variant of the Pathfinder algorithm is based on the Minimum Spanning Tree (MST) al-
gorithms. Typical MST algorithms such as the Kruskal or the Prim algorithms are greedy approaches.
As Binary Pathfinder, the current state-of-the-art algorithm used to generate PFNET is a dynamic pro-
gramming algorithm, the algorithms based on the MST algorithms should be faster. Let G = (V, E) a

17

Research Report #1 - ECSC - Mieres

| Domain (year) | #Nodes | #Links Ori)g];nal Bllrjl]z;ry (plzadsefcel;ls:‘or) };j‘;t

1 | Argentina (2005) 263 19562 110309.5 5447.66 320.66 268.28
2 Chile (2004) 242 17914 56025.26 2928.4 192.7 162.76
3 China (2002) 212 8541 37644.78 2544.5 179.7 151.36
4 Cuba (2004) 219 10644 45319.38 2065.04 200.1 169.82
5 Cuba (2006) 221 11286 33784.98 2813.92 144.96 122.8
6 Europe (2002) 218 17242 53357.56 2169.38 202.36 123.6
7 France (2002) 216 10087 30105.24 2909.78 187.1 159.1
8 | Germany (2002) 218 11745 33631.5 2099.06 137.8 117.2
9 Japan (2002) 213 9028 27041.28 2288.76 177.26 182.88
10 | Mexico (2005) 250 21264 100131.76 | 5569.52 304.16 183.98
11 Peru (2002) 218 8485 41196.14 2866.12 196.98 166.58
12 | Portugal (2005) 254 22179 79733.1 4767.96 227.38 194.18
13 Spain (1994) 219 13478 49800.4 3022.02 197.92 169.28
14 Spain (1998) 223 16226 44860.4 2854.34 152.94 129.82
15 Spain (2002) 240 19183 77421.34 4723.66 266.86 225.52
16 Spain (2004) 240 23430 56890.9 4716.78 192.64 229.6
17 UK (2002) 218 13567 50484.46 2147.4 200.56 120.56
18 USA (2002) 218 18132 54046.88 2195.02 148.54 126.38
19 | Venezuela (2005) 239 15415 50741.26 4248.92 257.08 154.86
20 World (2002) 218 20154 37976.02 2178.64 198.28 168.54

Table 1: Comparison of all the algorithms (computation times are expressed in milliseconds on an Intel
dual-core 3.4 GHz CPU with 2 GB of memory)

non-directed connex graph. A MST of G is a sub-graph T' = (V, E’) of G, E’ C E, including all the
vertex of G, where T is a tree and where the sum of the cost of each edge is minimal.

The relation between the result of a Minimum Spanning Tree (MST) algorithm and a Pathfinder
algorithm is well known in the literature. For instance, [?] stated that for a given symmetric cost matrix
W, r and ¢, the union of all the MST extracted from a PFNET(r,q) is PFNET(co,n — 1). Although
it is not stated explicitly in his paper, the union of all the MST extracted from a given graph G is also
PFNET(co,n — 1). This can be easily proved by contradiction: if e(4,j) is an edge of a MST, this edge
belongs also to the minimal cost path between the node ¢ and j, so to the graph PFNET (co,n — 1). If
not, it should be possible to build a better MST by adding the edge e(i, j) to the tree, and by deleting
another edge. In the same way, all the edges of the PFNET (co,n — 1) belongs to at least one MST of
G. We have use this idea to implement a quicker algorithm for the generation of PENET(r, ¢) when r is
restricted to co and ¢ to n — 1.

So to generate the PFNET (co,n — 1), we have to compute all the possible MST of a graph and
return the union of the corresponding edges. The two corresponding well known algorithms, to compute
a MST, are Kruskal and Prim. The Prim algorithm grows an initial tree by looking all the neighbors of a
given vertex and by selecting the one than minimise the current cost of the tree. This neighbor-behavior
seems to be more efficient when the networks are represented as a real graph (by the way of pointers, or
some other structures). In our case, the scientific domains are represented by co-citation matrices and
the Kruskal algorithm seems to be more suited. Another more technical and important reason for this
choice will be explained later.

In the Kruskal algorithm, all the edges are sorted in an ascending order. The edges are then added one
by one in the final tree only if they do not connect the same cluster (in such a way that cycles are avoided).
In this case, at each iteration, two nodes belonging to the current tree are only connected by the edges
having the minimal cost. The algorithm uses several sub-functions. The function CREATE-CLUSTER (v)

18

Research Report #1 - ECSC - Mieres

applied to a node v create a single cluster of size 1 and corresponding to v. The function CLUSTER (v)
return the cluster associated to the node v. Usually this is done by returning an element identifying in an
unique way the cluster containing v. The function MERGE-CLUSTER (u, v) union the cluster containing
the node u with the one containing the node v.

The original Kruskal algorithm is:

1. Define a tree, T' = ()
2. FOR each node v € S[G]
3. CREATE-CLUSTER(v)

~

. Create F', a set of all the edges of G sorted by their weights
. FOR each edge (u,v) € F
IF CLUSTER (u) # CLUSTER(v), THEN

5
6

7. T=TU{(uv)}
8 MERGE-CLUSTER (u, v)
9

. Return T

Our proposal concerns a way to compute the union of all the possible MST of a given graph with
the same time complexity required to compute one of these MST. It could be noticed that the difference
between the different MST comes from the edges having the same values, but still not present in the same
cluster during a given step of the algorithm. At this step, the algorithm have the choice between different
edges, and all these choices correspond to the same amount of different MST. In particular, if all edges
have a different weights, the MST is unique. This corresponds to the only non-deterministic behavior of
the original Kruskal algorithm, that let this algorithm to produce different trees. In the following, we will
call multiple-edges the non-common edges between all the possible MST generated from a given graph.

So, to achieve our final goal of merging directly the different MST during the run of the algorithm,
we have to detect these multiple-edges. The first property of these edges is that they have to have the
same weights. This is computationally efficient because we can use the sort of the edges done in the
initialisation of the algorithm. If the original algorithm is looked carefully, we can notice that once one
of these edges are added to the tree T', the two clusters corresponding to this edge and to 7 are also
merged. In this case, it is impossible in a further step to detect if two edges are or not multiple-edges.

The only solution is to store them in a temporary set H instead of adding them directly to the
current tree, and process this set only when we are sure that this will not affect the detection of other
edges. The processing of the set (i.e. the union of all the edges of the temporary set with the current
tree) can be done once a new edge with a different weight has been found. These remarks let us to define
directly the algorithm K-Fast Pathfinder, shown below:

1. Define a tree, T = ()

2. FOR each node v € S[G]

3. CREATE-CLUSTER (v)

4. Create F, a set of all the edges of G sorted by their weights
5. FOR each edges (u,v) remaining in F

6. H=0

19

Research Report #1 - ECSC - Mieres

7. FOR each edges (u/,v’) remaining in F where w(u,v) = w(u',v’)
8. F=F—{(v,v)}
9. IF CLUSTER(«/) # CLUSTER(v'), THEN

10. T=TU{(,v)}

11. H=HU{{,v)}

12. FOR each edge (v',v') € H

13. MERGE-CLUSTER (v, v')

14. Return T’

It is also interesting to note that this improvement can only be done with the Kruskal algorithm,
and not the Prim algorithm. Indeed, in the Kruskal algorithm, the edges-sorting acts in a global way,
allowing us to detect (and union) the different edges that would be present in the different MST trees.
In the Prim algorithm, the growing of the tree is done in an incremental so a local way, by adding a
non-explored edge to the current tree. In this condition, the detection of two edges with the same values
that should be merged could not be achieved directly, because they could be located far away from each
other, at least for a minimal cost (a sorting would be required at each iteration to do so).

As the K-Fast Pathfinder algorithm is based on the Kruskal algorithm, it as the same time complexity.
The algorithm needs O(|E|.log(| E|)) operations to sort the list of the edges by their weights, where |E| is
the number of edges. To know in which cluster belongs each vertex, we can use a disjoint-set data structure
with union by rank and path compression [1]. The cost of the CREATE-CLUSTER (v) function is O(1).
The cost of the functions CLUSTER(v) and MERGE-CLUSTER(v) can be proved to be O(log(n)).
Although there is two imbricated FOR loops, at most |E| CLUSTER(v) and MERGE-CLUSTER (v)
operations are performed in the worst case. So, as we have |E| < n? and log(|E|) = O(log(n)), the
theoretical cost of the full algorithm is O(]E|.log(n)). In conclusion, this algorithm is much more fast
than the original Pathfinder algorithm, in spite of the recent improvements proposed in the literature.
For instance, Fast Pathfinder, proposed in [| has a time complexity of O(n?) when applied with ¢ = n— 1.

It is important to mention that the time complexity developed previously has only a theoretical
importance. In practice, due to the high number of calls to the CLUSTER(v) functions, compared to
the number of calls to MERGE-CLUSTER (u, v), it is more efficient to consider another data structure
than the disjoint-set to implement these functions. In our case, each node v is affected to a single index
¢(v) encoding in a unique way the corresponding cluster, so each call to CLUSTER(v) is done in O(1).
Then, MERGE-CLUSTER (u, v) consists to affect the value ¢(u) to each node having the value ¢(v), and
this can be done in O(n). So the practical time complexity of the algorithm is O(|E|.(n + log(n))).

Concerning the space complexity, we need to store three lists of edges with their weights, that are
F, T and H. The record of the cluster can be done with a single additional attribute for each node, so
the total space complexity of the algorithm is 3.|E| + n.

ABSTRACT: The main idea concerning the K-Fast Pathfinder algorithm comes from the fact that the
superposition of all the Minimum Spanning Trees (MST) extracted from a given network is equivalent to
the result of the Pathfinder algorithm parametrized by a specific set of parameters (r = oo and ¢ = n—1).
Although this property is well known in the literature [?], it seems that no algorithm have been proposed
to decrease the high computational cost of the Pathfinder algorithm, using ideas based on the MST
algorithms.

It should also be noted that these parameters are the most used to produce PFNET networks for
large domains [].

20

Research Report #1 - ECSC - Mieres

5.10 Comparison between Shortest Path and MST algorithms

Now, have a look about the results obtained with Shortest Path based algorithm (such as the modified
Dijkstra algorithm) and a MST based algorithm (such as K-Fast-PFNet). All of these algorithms produce
trees, but these trees are not equivalent. Proof: let G be a graph in which several paths connecting a
source node and a destination node have a link L in common, and this link has the minimum value w
(the remaining of all the links have a value greater than w). In G, the source and the destination nodes
are connected with paths having the same value w (because the MAX of the values of each independant
path has the same value w). So, a Shortest Path algorithm will select, for the final tree, one of these
paths (it could be the first met, ...), but a Maximum Spanning Tree algorithm will select the path having
the link with the maximum value, because of the pre-ordering step of all the edges. In conclusion, when
several trees are possible using different paths with the same minimum value, a Shortest Path algorithm
selects one of the path in a non-deterministic way, and a MST algorithm selects the path according to
another criterion depending of the value of all the links, so, in the general case, these two trees will not
be the same.

/
Shortest Path Modified Dijkstra ~ Modified Dijkstra | Modified Dijkstra ~ Modified Dijkstra
based algorithms Tree Tree Tree Tree
Fusion
" Fast-PFNet Graph

#

| Modified PFNet Graph |

— / \Includes
Maximum Spanning

Tree bused algorithms K-Fast-PFNet Graph Modified Prim Graph

—

Figure 10: A comparison between the output of the modified PFNet algorihm, the modified Dijkstra
algorithm, Fast-PFNet, K-Fast-PFNet, and the modified Prim algorithm. A double-sided arrow indicates
an equivalence, and a single-sided arrow indicates a fusion or an inclusion.

6 Conclusion

In this paper, we have analyzed several algorithms producing Visual Science Maps similar to that
ones produced by the modified PFNet algorithm. Algorithms coming from the Shortest Path class and
from the Maximum Spanning Tree class have been developped, tested and discussed on several examples.
These algorithms were first adapted to meet the specific behavior of a modified PFNet algorithm. The
first class of algorithms, the Shortest Path algorithms such as Dijkstra and Floyd-Warshall, are usefull to
produce shortest path trees from a given node, or any node. In the case of the Dijkstra algorithm, this
node can be set up to give some interesting graphical properties to the output graph. For instance, a
good solution is to take the node connecting the edge with the maximum value or the node connecting the
maximum number of edges. The Floyd-Warshall algorithm gives several trees, each one corresponding to
a part of the final solution (i.e. a graph equivalent to the modified PFNet algorithm) and a refinement

21

Research Report #1 - ECSC - Mieres

has been proposed to fusion these trees. The second class of algorithms, the Maximum Spanning Tree
algorithms, provide algorithms able to generate PFNet graphs, but in a different way. In this class of
algorithms, a tree is generated first, than edges are added (instead of deleted) to form the final graph.
These edges can be described by a specific property. In the most common maps, this property is not
observed, in a way that a simple adaptation of a Maximum Spanning Tree algorithm can lead to the same
graph as modified-PFNet does. Based on this remark, we have developped a fast version of the Kruskal
algorithm to solve the problem quickly, but not being able to solve the general case, and a reliable version
of the same algorithm to solve the problem in the general case. All these algorithms have been tested on
several real world examples to retrieve time statistics.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Second Edition.
The MIT Press, 2001.

[2] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Information Processing
Letters, 31(1):7-15, 1989.

[3] R. W. Schvaneveldt. Pathfinder Associative Networks. Ablex, Norwood, NJ, 1990.

[4] Wikipedia, 2006. Scientometrics, In: Wikipedia. The free encyclopedia. Available on http:/en.
wikipedia.org/wiki/Bibliometrics. Accessed on 11th, December, 2006.

22

