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Abstract

In the last few years, there is an increasing interest to generate visual representations of very large
scientific domains. A methodology based on the combined use of ISI-JCR category cocitation
and social networks analysis through the use of the Pathfinder algorithm has demonstrated its
ability to achieve high quality, schematic visualizations for these kinds of domains. Now, the
next step would be to generate these scientograms in an on-line fashion. To do so, there is a
need to significantly decrease the run time of the latter pruning technique when working with
category cocitation matrices of a large dimension like the ones handled in these large domains
(Pathfinder has a time complexity order of O(n*), with n being the number of categories in the
cocitation matrix, i.e., the number of nodes in the network).

Although a previous improvement called Binary Pathfinder has already been proposed to
speed up the original algorithm, its significant time complexity reduction is not enough for that
aim. In this paper we make use of a different shortest path computation from classical approaches
in computer science graph theory to propose a new variant of the Pathfinder algorithm which
allows us to reduce its time complexity in one order of magnitude, O(n?), and thus to signif-
icantly decrease the run time of the implementation when applied to large scientific domains
constdering the parameter ¢ = n — 1. Besides, the new algorithm has a much simpler structure
than the Binary Pathfinder as well as it saves a significant amount of memory with respect to the
original Pathfinder by reducing the space complexity to the need of just storing two matrices.
An experimental comparison will be developed using large networks from real-world domains to
show the good performance of the new proposal.
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1. Introduction

The goal of generating schematic visualizations for scientific domain analysis has been
pursued since several decades ago and different approaches have been used to put it into
effect (Borner et al., 2003; Buzydlowski, 2002; Chen, 1999; Lin et al., 2003; White, 2003).
Their good performance have made the size of the tackled domain progressively increase,
with the final aim of being able to represent the largest possible one, the World (Boyack
et al., 2005; Leydesdorff, 2004b,a; Samoylenko et al., 2006).

In 1998, Chen (1998a,b) was the first researcher to bring forth the use of Pathfinder
Networks (PFNETSs) in citation analysis. Since then, it has been used for the study
and representation of minor domains or scientific community. In 2004, Moya-Anegén
et al. (2004) proposed the combination of PENET and ISI categories cocitation, making
possible the depicting and analysis of large scientific domains in an easy way. The scientific
communitie is understood in the terms put forth by Hjorland & Albrechtsen (1995), as
the reflection of interactions between authors, and their role in science, through citation
(i.e., classical author cocitation analysis). The new technique is based on the use of
thematic classification since categories taken from the ISI-JCR are considered as entities
of cocitation and units of measure (Moya-Anegon et al., 2005, 2006; Vargas-Quesada &
Moya-Anegoén, 2007). The cocitation matrix is then treated as a graph which represents
a social network of the existing relations and processed through social network analysis:
the graph is pruned by means of the Pathfinder algorithm (Dearholt & Schvaneveldt,
1990) to get a PFNET, keeping just the most salient relations, and the resulting graph
is graphically represented using a graph drawing algorithm, Kamada-Kawai (Kamada &
Kawai, 1989).

So, once an appropriate methodology has been designed to graphically represent very
large scientific domains, the next challenge is to build them in a very small amount of
time, allowing us to generate the scientograms on line. If this goal is finally achieved,
these kinds of visual science maps could be used to design an information retrieval system,
composing an Atlas of Science as the one that is being implemented by Felix de Moya’s
Scimago research group for the IberoAmerican scientific production 2.

The key problem to generate scientograms of large scientific domains by means of the
Pathfinder algorithm is the great time and space complexity it requires. As we will see
later, the pruning it applies is based on eliminating those links which violate the triangle
inequality (Schvaneveldt, 1990). To do so, there is a need to compute a progressive series
of ¢ matrices D of dimension n? which store the shortest paths between each pair of
entities (graph nodes) considering paths comprised by as much ¢ links. Moreover, their
computation requires the use of an additional series of ¢ auxiliary matrices W*. This
way, as a value of ¢ equal to n — 1 is required in order to achieve an appropriate pruning
in large scientific domains keeping only the most salient links, the resulting time and
space complexity of the Pathfinder algorithm are O(n*) and O(n?) (in fact, 2 - (n — 1)
matrices of dimension n? are stored), respectively. Since the value of n is high in the
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large scientific domains handled, we come up to the undesired conclusion that the run
time of the algorithm is prohibitive to generate the maps on-line.

We should note that a previous attempt was made in this aim by Guerrero-Bote et al.,
which recently proposed an improved variant of the original Pathfinder algorithm, called
Binary Pathfinder (Guerrero-Bote et al., 2006), that reduced its time complexity for the
current case to O(log n - n®). However, although the reduction is very significant, it is
not enough to allow us to generate the maps "on the fly" since, for values of n around
250, as those handled in our very large domains, the run of the Binary Pathfinder takes
several seconds, and this amount of time is then increased by that corresponding to
Kamada-Kawai’s layout algorithm.

In this contribution, we introduce Fast Pathfinder, a new Pathfinder variant taking
as a base a classical algorithm in graph theory, Floyd-Warshall’s (Cormen et al., 2001),
to compute the shortest paths in the graph in a different way. Thanks to that and to
the fact that we fix the value of ¢ to n — 1, we are able to reduce the time complexity
of the original algorithm in one order of magnitude, O(n?), which is a killer advantage
when applied to the generation of scientograms for large scientific domains. Moreover,
the new algorithm has a much simpler structure than Binary Pathfinder, since it only
requires three loops wrapping two simple operations, as well as it only requires two
squared matrices to operate. An experimental comparison will be developed using large
networks from real-world domains corresponding to the scientific production of different
countries to show the good performance of the new proposal in comparison with both
the original and the Binary Pathfinder.

To do so, the paper is structured as follows. Section 2 briefly reviews the original
Pathfinder and the Binary Pathfinder algorithms. The new proposal is introduced in Sec-
tion 3, together with a detailed analysis of its advantages in terms of speed, memory sav-
ing and simplicity. Section 4 collects the experiments developed to test Fast Pathfinder.
Finally, some concluding remarks are pointed out in Section 5.

2. Preliminaries

This section is devoted to introduce the preliminaries needed to achieve a good under-
standing of our proposal. With this aim, the next two subsections respectively describe
the original Pathfinder and the Binary Pathfinder algorithms.

2.1. The Pathfinder Algorithm

Pathfinder was introduced by Dearholt and Schvaneveldt as a technique to choose the
shortest links in a network in the field of social networks (Dearholt & Schvaneveldst,
1990). The result of the Pathfinder procedure is a pruned network called PENET —
which is either a directed or undirected graph depending on the fact that the original
similarity matrix is symmetrical or not— that only keeps those links which do not violate
the triangle inequality stating that the direct distance between two nodes must be lesser
than or equal to the distance between them passing through any group of intermediate
nodes. As said by its creators, PFNETs provide unique representations of the underlying
structure for domains in which objective measures of distance are available (Schvaneveldt,
1990).



The Pathfinder algorithm is based on two main parameters:
1. r € [1, 0], which defines the adaptive metric, the Minkowski r-metric, considered
to measure the distance between two network nodes not directly connected:

D:{Zdﬁ}T (1)

When r takes value 1, the Minkowski metric results in the sum of the link weights;
when it takes value 2, it becomes the usual Euclidean metric; and when r tends to
00, the path weight is the same as the maximum weight associated with any link
along the path.

2. ¢ € [2,n — 1] (with n being the number of nodes in the network), which limits
the number of links in the paths for which the triangle inequality is ensured in the
final PFNET. Hence, every path connecting two nodes that violate the triangle
inequality, having an associated Minkowski distance greater than any other path
between the same two nodes composed of up to ¢ links, will be removed.

Note that r = oo and ¢ = n — 1 are the common parameter values when Pathfinder is
used for large domains scientogram generation. These values are very advantageous for
large network pruning (Chen, 2004).

To build a PFNET, two different kinds of auxiliary matrices are used:

- Wjik, which stores the minimum cost to go from node j to node & by following exactly
i links. This matrix is computed recursively using matrix Wjik_ ! with W' being the
original weight matrix.

- D;—k, which stores the minimum cost to go from node j to node k by following any
path in the network composed of i or less links. This matrix is computed recursively

using matrices Wj, ..., W;.

1. Compute W'*! = W © W, as follows: wif' = MIN((wjm)" + (w},,)")"/", for
1<m<n.

2. Compute D', as follows: d};, = MIN(wj,,...,wk,), for j # k.

Tterate until W9 and DY are computed.

4. Compare W' and D9 : all the links having the same values in these two matrices
will belong to the final PENET.

w

Fig. 1. The original Pathfinder algorithm.

The original Pathfinder algorithm pseudocode is shown in Fig. 1.

Notice that the algorithm has a time complexity order O(q - n?) as ¢ steps have to be
done to build the ¢ matrices W* and D?. Each of the latter matrices stores n? weights, so
a loop of this order is needed to compute them in each step. Finally, an additional loop of
n steps is needed to compute each component of Wt!, as seen in line 1 of the algorithm.
As the maximum possible value for ¢ is n — 1, Pathfinder has a time complexity of O(n*)
in that case.

On the other hand, the resulting space is thus of complexity O(q - n?) (O(n®) when
q = n — 1), since there is a need to build ¢ matrices W and other ¢ matrices D?, as seen
above.



2.2. The Binary Pathfinder Algorithm

Guerrero-Bote et al. (2006) recently proposed the Binary Pathfinder algorithm, an im-
proved variant of the original Pathfinder aiming at reducing its time and space complexity.
Binary Pathfinder takes the following two aspects as a base to put this improvement into
effect:

1. The only matrix in the series of D’ that is actually needed for the algorithm to
operate is the last one, D?, to be compared with the initial weight matrix 1W*'. The
remainder are not necessary.

2. The matrices D' can be directly generated from two previous ones in the same way
as done for the consecutive W matrices: D't7 = D © DJ.

Hence, the authors demonstrated that the distance matrix D**J storing the minimum

distances between each couple of nodes can be calculated from D? and D7 as follows:

dif? = MIN {dig, i, ()" + ()" } (2)

where d, = wy;, obtaining the same result as with the original Pahtfinder algorithm
described in the previous subsection.

Thanks to the latter, a new Pathfinder algorithm was designed which does not need to
compute every D’ matrix, i = 1, ..., g, but can make larger steps. Taking the procedure to
transform an integer number to binary as a base (that is the inspiration for the algorithm’s
name), Guerrero-Bote et al.’s Binary Pathfinder reduces the task to calculating just log(q)
matrices, those corresponding to indices being powers of 2: D', D?, D* D3, .. ..

1. i = 1; ng = 0; Generate D! = W; DY — co.
2. IF (¢ mod 2 = 1) THEN Compute D? = DY ® D!.
3. ng=1.
4. WHILE (2-i < q)
5. Compute D?* = D' ® D",
6. IF ((¢ — ng) mod (4-4) > 0) THEN
7. Compute D? = DI D??,
8. ng=mnqg-+2-i.
9. 1 =21
10. Compare W1 and D9 : all the links having the same values in these two matrices
will belong to the final PEFNET.

Fig. 2. The Binary Pathfinder algorithm.

The Binary Pathfinder algorithm pseudocode is shown in Fig. 2. Notice that the princi-
pal loop reduces the number of steps of the original Pathfinder from ¢ to log g. Therefore,
the time complexity of the new Binary Pathfinder variant becomes O(log ¢-n?) instead
of O(q-n3), which in the maximum case becomes O(log n -n?) instead of O(n?), a very
significant time difference for large networks. Empirical tests showing these differences
on real cases are shown in (Guerrero-Bote et al., 2006) and in section 4 of the current
paper. On the other hand, the space complexity is even more significantly reduced, as
only two squared matrices to compute D? in each step, another matrix to store the final
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distance values D?, and one last matrix W to store the original weights are required,
instead of 2 - ¢ matrices W* and D", as in the original algorithm.

3. Fast Pathfinder

As we have seen in the previous section, the Binary Pathfinder approach is able to
achieve an important speed up of the Pathfinder algorithm. Unfortunately, this time
complexity reduction, although significant, is not enough for the aim of generating scien-
tograms of very large scientific domains in an on-line fashion since, for values of n around
250 and for ¢ = n — 1, the run of the Binary Pathfinder still takes several seconds (see
section 4).

In this section, we introduce Fast Pathfinder, a new variant of the Pathfinder algorithm
which tries to solve the latter problem. To do so, we first analyze the underlying idea
of this approach, which is based on the use of classical algorithms in graph theory for
shortest path computation. In fact, the new variant is based on the idea that a PFNET
can be obtained with a Shortest Path algorithm when ¢ = n — 1. Then, we introduce the
Fast Pathfinder’s pseudocode and analyze its main advantages and its only disadvantage.

3.1. Underlying Idea: Graph Shortest Path Computation Algorithms

As we need to fix the value of ¢ to n — 1, the triangle inequality is verified for the best
path between any couple of nodes in the graph, thus the problem becomes a shortest path
problem. This is why we can replace steps 1 to 3 in the original Pathfinder algorithm (see
Fig. 1) to achieve the same result in less computation time. When analyzing the operation
mode of this algorithm from a computer science point of view, one can recognize that
what it does is nothing but computing a distance matrix D"~ ! storing the lengths of
all the shortest paths (regarding the Minkowski r-metric) between any pair of network
nodes comprised by up to n — 1 links, and then comparing the latter values to the original
weights in matrix W' to determine which links will finally belong to the PFNET.

To do so, it applies the classical dynamic programming approach in algorithm theory
(Cormen et al., 2001) in order to ensure the obtaining of the optimal solution for the graph
shortest path problem. Dynamic programming (Dreyfus, 1965) constitutes the practical
embodiment of the Bellman’s principle of optimality (Bellman & Kalaba, 1965) through
a clever ("moon walking" type) technique for computing optimal sequential-decisions
by a forward-looking, backward-recursive search. Hence, the Pathfinder algorithm is a
direct instance of the latter algorithmic methodology, that applies the usual bottom-up
approach based on a progressively increasing building of the matrices ensuring to take
the best decision at each step, taking into account all the partial decisions made in the
previous ones. This results in the Pathfinder algorithm structure where, to build the
matrices W? and D? of dimension n? in each of the n — 1 steps, an additional loop of
size n is required to check all the possible choices of crossing a link for the shortest path
computation between two nodes. All of the latter defines the O(n*) time complexity.

Notice that Binary Pathfinder keeps the same algorithmic approach than the original
Pathfinder version, and the improvement introduced is due to the fact that it smartly
reduces the number of steps in the outer loop needed to compute the same distance
matrix D"~! while still satisfying the Bellman’s principle of optimality.
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Hence, as seen in Binary Pathfinder, the only two matrices that are finally needed to
obtain the PFNET as a result of pruning the original network are D"~ and W'. As
we know that D"! is a shortest path distance matrix when ¢ = n — 1, we can borrow
alternative (and quicker ways) to compute it from the classical algorithms in graph
theory (Cormen et al., 2001). In fact, there are at least two classical graph shortest
path algorithms, respectively called Floyd-Warshall's and Dijkstra’s and also based on
the dynamic programming approach, that are able to compute all the shortest paths of
length up to n — 1 links (according to an Euclidean metric) in a cubic time complexity.
The adaptation of Floyd-Warshall’s algorithm to the computation of the D"~! matrix
for a PENET using the Minkowski r-metric is thus the base of our new Fast Pathfinder
proposal.

3.1.1. Floyd-Warshall’s shortest path algorithm

Floyd-Warshall’s algorithm (Floyd, 1962; Warshall, 1962) is a dynamic programming
algorithm giving the shortest paths between any source node and any destination node
in a directed graph in cubic time. The algorithm computes, for each pair of nodes i
and j, the minimum weight among all paths between them, storing it into a distance
matrix D = d;;. The weight of a path between two nodes is the sum of costs of the
links in that path. Additionally, a predecessor matrix P can be used to retrieve the links
composing the shortest paths themselves, where p;; corresponds to the index of the last
node included in the optimal path from i to j.

The basic Floyd-Warshall’s algorithm pseudocode is shown in Fig. 3. When the pre-
decessor matrix is to be computed, it becomes the pseudocode shown in Fig. 4.

.D—W.

. FOR k from 1 to n DO

FOR i from 1 to n DO
FOR j from 1 to n DO

T 0 N

Fig. 3. Basic Floyd-Warshall’s algorithm.

. D—W.
. FOR 7 from 1 to n DO
FOR j from 1 to n DO
. FOR k from 1 to n DO
FOR i from 1 to n DO
FOR j from 1 to n DO

sum = d;; + dkj.

IF (dij > sum)

THEN dij = sum; pij = Pkj-

SO END O W

—

Fig. 4. Floyd-Warshall’s algorithm using the predecessor matrix.
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It is very simple to check that both variants of the algorithm have a time complexity
of O(n?).

3.1.2. Digkstra’s shortest path algorithm

Dijkstra’s algorithm (Dijkstra, 1959) is both a greedy and a dynamic programming
algorithm that solves the single-source shortest path problem for a directed graph with
nonnegative link weights. As in Floyd-Warshall’s technique, the cost of a path between
two nodes is the sum of costs of the links in that path. The algorithm gives the costs
of the shortest paths from a single, fixed node s to all the other nodes in the graph in
quadratic time. To retrieve the paths, it uses the same kind of predecessor data structure
(an array p, in this case) than Floyd-Wharshall’s algorithm (see the previous subsection).
In order to get the all-pairs shortest paths, there is a need to wrap Dijkstra’s algorithm
into a linear loop for all the graph nodes, thus resulting in a time complexity of O(n?).

V[G] < Set of graph nodes.
. FOR each node v € V|G] DO
. dy = 00; py = 0.
.ds=0; E—0; F—VI[G].
. WHILE (F # 0)
u = EXTRACT-MIN(F); E « E U {u}.
FOR each node v € NEIGHBORS(u) DO
IF (dy > dy + wyy) THEN d, = dy + Wyw; Py = u.

® NS oW N

Fig. 5. Dijkstra’s algorithm.

Dijkstra’s algorithm pseudocode is shown in Fig. 5, where V|[G] is the set of graph
nodes, F'is a set of unvisited nodes by the algorithm, and u = EXTRACT — MIN(F)
returns the node u with the lowest distance value in F' and removes that node from it.
On the other hand, E is the set of already visited nodes.

In its simplest implementation, a normal array is used to store the links, and thus
operation EXTRACT-MIN is simply a linear search through all nodes in F. In this
case, the time complexity is O(m - n), with m being the number of the s node links. As
the maximum number of links for any node in the graph is n — 1, the maximum time
complexity becomes O(n?).

We should also notice that there are more efficient implementations of Dijkstra’s al-
gorithm for the case of sparse graphs with a number of links significantly lower than n?2.
They are based on storing the graph in the form of an adjacency list and using more ad-
vanced data structures than a simple list. With a heap in the EXTRACT-MIN function,
the time complexity becomes O((m + n) - log n). When a Fibonacci heap is considered,
it becomes O(m + n - log n).

3.2. Structure of Fast Pathfinder

Taking into account what has been explained in the latter subsection, Floyd-Warshall’s
algorithm has been selected to substitute the costly computation of matrix D"~! in the
original Pathfinder algorithm. Dijkstra’s algorithm is not as well suited to do so. The
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reasons are mainly related to the structure of the graphs and the greater simplicity of
the Floyd-Warshall’s algorithm implementation and will be detailed at the end of this
section.

Since working with Floyd-Warshall’s algorithm we are able to build this matrix in
cubic time and we avoid the need to compute the temporary matrices W and D?, the
substitution is much more effective. To do so, there is a need to only perform one trivial
change to the pseudocode shown in subsection 3: the Minkowski r-metric has to be used to
compute the path lengths. In this way, we can directly substitute the three first lines of the
Pathfinder algorithm in Fig. 1 by the five lines of the basic Floyd-Warshall’s pseudocode
in Fig. 3, with the previous adaptation. The resulting Fast Pathfinder pseudocode is
shown in Fig. 6.

1. D~ W; PFNET « (.
2. FOR k from 1 to n DO
3. FOR i from 1 to n DO
FOR j from 1 to n DO
. dij = MIN {dij, ((dik)r + (dkj)r)l/r}‘
. FOR i from 1 to n DO
FOR j from 1 to n DO
IF (d;j = w;;) THEN PFNET «— PFNET U (i, ).

@ N o

Fig. 6. The Fast Pathfinder algorithm.

Since the shortest path computation procedure has an O(n?) time complexity and
the W-D comparison takes time O(n?), the algorithm will have a time complexity of
O(n?) + O(n?) = max {O(n®),0(n?)} = O(n?). Besides, notice that the computation of
the predecessor matrix is not needed and the algorithm only requires to store two square
matrices to operate (W and D).

On the other hand, there is another alternative for the PFNET link selection (lines
6-8). Actually, by using Floyd-Warshall’s algorithm for the shortest path computation,
there is not a need to compare the distance matrix D to the original weight matrix W to
select the PFNET links, but those links can be directly extracted from the predecessor
matrix P. In this second way, we used this matrix as an adjacency matrix to improve the
speed of the computation. At the start of the algorithm, each link is considered belonging
to a possible shortest path, thus to the PFNET, so the corresponding component in P is
set to true. Then, each time the distance d;; of a link (7, j) is greater than the distance
of the path (i, %, j), the link (i, 5) is discarded from the PFNET and the corresponding
component in the matrix is set to false. The final value of P indicates exactly those links
that must be preserved. Hence, we don’t need to take matrix W into account to select the
links for the PFNET. The pseudocode of this second Fast Pathfinder algorithm variant
is shown in Fig. 7.

This second way of selecting the PFNET links has also an O(n?) time complexity,
so the time complexity of the second Fast Pathfinder variant is still O(n3). However,
its actual running time would be slightly larger than the former version because of the
computation time needed to generate the predecessor matrix. We will experimentally
check this assumption in the next section.



1. D~ W; PFNET « (.
2. FOR i from 1 to n DO
3. FOR j from 1 to n DO
4. pij = true.
5. FOR k from 1 to n DO
6. FOR i from 1 to n DO
7. FOR j from 1 to n DO
8. sum = ((di)" + (di;)")M".
9. IF (dU > sum)
10. THEN d;; = sum; p;; = false.
11. FOR i from 1 to n DO
12. FOR j from 1 to n DO
13. IF (pi; = true) THEN PFNET « PFNET U (i, ).

Fig. 7. The Fast Pathfinder algorithm variant, using a predecessor matrix.

Concerning its space complexity, it is the same than the former, since it also requires
to store two square matrices to operate: D, the same that the other variant, and the
predecessor matrix P (in the place of the weight matrix W).

Finally, we should also note that two new variants could also be designed in case Dijk-
stra’s algorithm would have been considered instead of Floyd-Warshall for the shortest
path matrix computation. Besides, at first sight, it could seem that a lower time complex-
ity Fast Pathfinder could be obtained proceeding in that way by means of the advanced
implementation of the former algorithm based on the use of the Fibonacci heap.

However, we have decided not to consider Dijkstra’s variants due to two main reasons.
On the one hand, it is well known in algorithm theory that Dijkstra’s algorithm is quicker
than Floyd-Warshall’s for the case of sparse graphs, i.e., when the number of links in the
graph |A| tends to the number of nodes n, while the opposite holds for dense graphs,
i.e., when |A| — n?. Since the graphs resulting from cocitation matrices associated to
large scientific domains are actually "small worlds" (Watts & Strogatz, 1998; Watts,
2004), they are very dense and thus Floyd-Warshall’s proposal is the best choice. On the
other hand, the use of the latter variant is also beneficial since it results in a simpler
implementation of the Fast Pathfinder algorithm.

3.3. Main Advantages and Disadvantage of Fast Pathfinder

In summary, the Fast Pathfinder proposal introduced in the current contribution based

on Floyd-Warshall’s shortest path algorithm has the two following advantages associated:

1. Speed Increase: Thanks to the change in the shortest path distance matrix com-

putation, we are able to reduce the time complexity of the original algorithm in

one order of magnitude when ¢ is fixed to n — 1, from O(n*) to O(n?), which is

a great advantage when applied to large networks and, specifically, for the genera-

tion of scientograms of large scientific domains. In this way, it is also significantly

lower than the quickest Pathfinder variant, Binary Pathfinder (O(log n -n®) when
g=n-—1).
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2. Simplicity: Moreover, the new algorithm has a much simpler structure than the
previous approach reducing the original Pathfinder run time, Binary Pathfinder,
since it only requires three loops wrapping two simple operations. On the other
hand, Fast Pathfinder significantly reduces the space complexity since it only re-
quires two square matrices to operate instead of the 2 - n — 1 ones needed by the
original algorithm and the four ones by Binary Pathfinder.

On the other hand, its only disadvantage with respect to Binary Pathfinder is that while
in our case the value of the parameter ¢ is always fixed to n — 1, the latter algorithm
allows any possible value for ¢q. Of course, this restricts the generic applicability of Fast
Pathfinder, but we should remind that it has been specificaly proposed for the on-line
generation of large scientific domain visual maps. Note also that any valid value for the
second main parameter r can be considered.

4. Experimental Results

In the current section, some experiments will be developed to test the actual run time
improvement obtained by our proposal, and to empirically prove that it always achieves
the same result as the original algorithm. To test the run time improvement, we have
compared our two Fast Pathfinder proposals, the one considering the same link selection
procedure than Pathfinder, and the other making use of the predecessor matrix for this
task (see Section 3.2), with respect to the current state-of-the-art Pathfinder variants,
the original algorithm and Binary Pathfinder. To do so, since the aim to propose this
algorithm was to use it for the design of scientograms of large scientific domains, we
have applied the four algorithms to twenty real networks of this kind, obtained from the
JCR category cocitation information available at the Scimago research group’s Atlas of
Science (http://www.atlasofscience.net/). Their sizes range from 212 to 263 nodes,
and from 8485 to 23430 links. Notice that, the link weights in this graph correspond to
similarities instead of distance measurements? .

In order to do a fair comparison, the original and Binary Pathfinder implementations
considered are the same ones used by the Binary Pathfinder’s authors. Our two Fast
Pathfinder variants have also been implemented in C. The four algorithms have been
compiled with the GNU GCC compiler with the -03 option, under the Linux operating
system, and run in an Intel dual-core Pentium 3.4 GHz computer with 2 GBytes of
memory. Pathfinder parameters have been set to ¢ = n — 1 (when considered) and r =
00, the typical values in large domain scientogram design. Fifty independent runs have
been performed for each algorithm and each network, and the global run time has been
divided by fifty for each, in order to obtain more precise statistics (notice that, although
the algorithms are deterministic, the measurement of the run time values can have small
fluctuations in some cases, so this is a most robust procedure).

3 According to Moya’s methodology (Moya-Anegoén et al., 2004; Vargas-Quesada & Moya-Anegén, 2007),
the normalized cocitation coefficients are used and correspond to similarities. The interested reader can
refer to that paper for more details. Actually, using similarities or distances has no influence at all in
our proposal. In case of using similarities, we would only need to replace MIN by MAX, >’ by ’<’, and
use 7 = —oo to mimic the MIN function instead of the MAX function in the Fast Pathfinder algorithm
(see Figs. 6 and 7).
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Table 1
Comparison of all the algorithms (computation times are expressed in milliseconds on an Intel dual-core
3.4 GHz CPU with 2 GB of memory), sorted by the number of nodes then by the number of links.

. . Original Binary Fast PF  Fast
# Domain (year) #Nodes #Links

PF PF  (predecessor) PF

—

China (2002) 212 8541 37644.78 2544.5 103.8 92.0
2 Japan (2002) 213 9028 27041.28 2288.76 93.6 85.4
3 France (2002) 216 10087 30105.24 2909.78 97.2 93.8
4  Peru (2002) 218 8485 41196.14 2866.12 126.4 102.6
5 Germany (2002) 218 11745 33631.5 2099.06 118.8 105.4
6 UK (2002) 218 13567 50484.46 2147.4 116.4 94.0
7 Europe (2002) 218 17242 53357.56 2169.38 122.2 94.6
8  USA (2002) 218 18132 54046.88 2195.02 110.6 95.2
9  World (2002) 218 20154 37976.02 2178.64 122.4 97.4
10 Cuba (2004) 219 10644 45319.38 2065.04 123.0 97.0
11  Spain (1994) 219 13478 49800.4 3022.02 122.8 101.0
12 Cuba (2006) 221 11286 33784.98 2813.92 107.6 106.6
13 Spain (1998) 223 16226 44860.4 2854.34 130.0 122.2
14 Venezuela (2005) 239 15415 50741.26 4248.92 148.0 135.0
15 Spain (2002) 240 19183 77421.34 4723.66 154.0 145.8
16  Spain (2004) 240 23430 56890.9 4716.78 192.64 142.2
17  Chile (2004) 242 17914 56025.26 2928.4 150.0 132.8
18 Mexico (2005) 250 21264 100131.76 5569.52 181.4 155.0
19 Portugal (2005) 254 22179 79733.1 4767.96 203.2 163.6
20 Argentina (2005) 263 19562 110309.5 5447.66 194.8 166.4

The results obtained are shown in Table 1, where the run times are expressed in
milliseconds. As expected, both Fast Pathfinder variants cleary outperform the original
Pathfinder algorithm in terms of run time, being around 450 times quicker, and what is
more important, they are significantly quicker than the Binary Pathfinder, reducing its
run time in the order of around 23 times for the predecessor-based variant and around
27 times for the other. In this way, it can be seen how we were right in the assumption
that the Fast Pathfinder variant not making use of the predecessor matrix is slightly
faster (approximately a 10%) than the other version not requiring the computation of
such data structure.

The most important conclusion we can draw from this experimental study is that,
using our new Fast Pathfinder proposal, we are able to generate real scientograms of
very large scientific domains in around 166 milliseconds in the worst case (Argentina
(2005) domain), while the current state-of-the-art approach, Binary Pathfinder, required
more than 2 seconds in the best case (Cuba (2004)) and more than 5.5 seconds in the
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worst one (Mexico (2005)). This constitutes a great step ahead since this time reduction
allows us to properly combine this pruning algorithm with the Kamada-Kawai layout
technique, thus being able to generate these kinds of scientograms in real time.

Our second experiment concerns the comparison of the visual science maps obtained
by the fastest variant of Fast Pathfinder (without using the predecessor matrix) with
those obtained by the Binary Pathfinder algorithm. This is to empirically prove that the
two algorithms give exactly the same results. To do so, we have written a bash script able
to generate 1’000°000 random matrices, from size 3 to 500, containing integral or real
numbers (two options selected randomly), and used as the cocitation matrices of virtual
social networks. The goal was to compare edge by edge the results provided by the two
considered algorithms. Only symmetric matrices were considered in this experiment and
the parameters were set to ¢ = n—1 and r = oco. In conclusion, during this long empirical
experiment, no networks were found where a single edge differs from the Binary and the
Fast Pathfinder algorithm’s results. For instance, the comparison of the results obtained
by the two algorithms on a 500-nodes map is shown in Fig. 8.
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Fig. 8. Comparison of the results obtained by the Binary Pathfinder algorithm (left) and the Fast
Pathfinder algorithm (right) on a 500-nodes map generated randomly.

5. Concluding Remarks

In this paper, we have presented a new variant of the Pathfinder algorithm, to be used
as a network pruning algorithm for the generation of visual representations of very large
scientific domains, aiming to decrease its actual run time. Taking the classical Floyd-
Warshall’s graph shortest-path algorithm as a base, we have been able to reduce the
original Pathfinder time complexity in one order of magnitude, from O(n?) to O(n?),
thus also clearly outperforming the state-of-the-art variant in terms of run time (Binary
Pathfinder, O(log n - n?)). The new algorithm has also a much simpler structure than
the Binary Pathfinder, while maintaining the original Pathfinder’s r parameterization (g
must be fixed to n — 1 in the current application) and saving a great amount of memory.
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The experimental comparison developed using twenty large networks from real-world
domains has demonstrated the capability of the new proposal to generate scientograms
of very large scientific domains in real time.
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